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Abstract 
The visual Euclidean Traveling Salesman Problem (TSP) 
presents participants with nodes, representing cities, and 
requires that the participant trace the shortest closed route 
among the cities. Humans solve a similar problem in every day 
navigation and search tasks. We investigated human TSP 
solutions for considerations other than solution length. We 
found a preference for solutions favoring distance-discounted 
reward and distance to first contact. A hierarchical stochastic 
model parameterizing solution length, distance-discounted 
reward, goodness of fit, and plan complexity showed similar 
effects. The model shows promise for approximating human 
performance in TSP and other TSP-like naturalistic tasks.  

Keywords: TSP; planning; problem solving; visual cognition.  

Introduction 

The Traveling Salesman Problem (TSP) is a spatial 
combinatorial optimization problem used in various forms in 
applied settings, such as operations (e.g., the Vehicle Routing 
Problem; Dantzig & Ramser, 1959) and engineering (Krolak, 
Felts, & Marble, 1971), and basic research on spatial 
cognition and navigation in animals (de Jong, Gereke, 
Martin, & Fellous, 2011) and humans (Tenbrink & Seifert, 
2011). Visual Euclidean TSP requires that the solver plot the 
shortest path through a 2D metric space containing nodes, 
representing cities, beginning and ending in the same 
location. TSP is computationally intractable, with each 
problem having (n – 1)! / 2 solutions. Therefore, brute-force 
approaches to obtaining optimal, shortest path solutions are 
too resource-intensive for many applications. 

Despite the aforementioned complexity of TSP, human 
solutions to TSP are typically an order of magnitude shorter 
(i.e., better) than those produced by many heuristic 
algorithms (MacGregor & Ormerod, 1996), and are typically 
no more than 10% longer than the optimal solutions, 
increasing linearly with problem size (Dry, Lee, Vickers, & 
Hughes, 2006; MacGregor & Ormerod, 1996; Pizlo et al., 
2006). Because human solutions are fast and near-optimal, 
understanding the mechanism people use to generate them 
has implications for algorithm development. 

Evidence suggests that humans do not exhaustively solve 
the problem at initial presentation. For example, Kong and 
Schunn (2007) showed that participants perform the majority 
of their global information-seeking saccades after beginning 
to solve the problem. Mueller, Perelman, Tan, and Thanasuan 
(2015) found very short (~4s) planning times (interval 

between initial viewing and beginning to solve the problem) 
that increased linearly with problem size.  

These characteristics have prompted the suggestion that 
humans use a hierarchical approach to problem solving in 
which a rapidly formed global plan guides the local decisions 
(e.g., Best & Simon, 2000). Many computational accounts of 
TSP follow this hierarchical structure, simplifying the 
problem space by grouping individual cities into clusters 
(e.g., Pizlo et al., 2006) or designating a global path through 
the space that starts as a convex hull (MacGregor, Ormerod, 
& Chronicle, 2000).  

This same strategy of following a rapidly produced global 
plan is likely used in similar tasks. One such task, searching 
for a target among candidate locations, requires planning a 
route that optimizes a distance-discounted reward function to 
minimize the estimated time to find (ETF) that target (see 
Wiener, Schnee, & Mallot, 2004). This general task is critical 
in operational domains, such as wilderness search and rescue 
(Perelman & Mueller, 2013) and  military and public safety 
search operations (Antoniades, Kim, & Sastry, 2003), as well 
as for sports such as orienteering (Blum et al., 2007). The 
present study investigates the extent to which a single 
adaptive mechanism could be used to solve TSP and other 
TSP-like problems.   

Investigations of human behavior in naturalistic TSP-like 
tasks (e.g., Blum et al., 2007; Perelman & Mueller, 2013; 
Perelman & Mueller, 2015; Ragni & Wiener, 2012; Tenbrink 
& Seifert, 2011; Tenbrink & Wiener, 2009) suggest that real-
world strategic planning requires considering factors other 
than path length. Many of these tasks require solvers to 
prioritize ETF and distance to first contact (DFC), optimizing 
a function that rewards visiting locations early in the path, 
versus TSP where rewards are uniform. Wiener et al. (2004) 
suggest that certain cluster-based strategies should produce 
this behavior, and Tenbrink and Wiener (2009) found a slight 
bias (roughly 58% of solutions; 8% more than expected) 
toward prioritizing larger over smaller clusters early in 
solutions to a naturalistic TSP-like task. Note that we have 
termed these alternative solution criteria ‘considerations’ 
rather than heuristics as they are not necessarily isolated 
mechanisms, but components of an underlying mechanism.  

If a common mechanism is used to solve TSP and similar 
tasks, then we should see evidence of these alternative 
considerations in TSP solutions. To our knowledge, there is 
no published literature searching for evidence of these 
considerations in traditional TSP solutions. Evidence of a 
common mechanism holds implications for algorithm 
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development and our understanding of human visual problem 
solving.  

General Method 
The present study consists of analyses of three datasets - two 
derived from experiments presented here, and one generously 
donated by other authors (see below).   

Experiments (Datasets) 1 and 2 
Michigan Technological University students participated in 
Experiments 1 and 2 (n = 29 and 35, respectively). The goal 
of Experiment 2 was to replicate the results of Experiment 1 
using a blocked design to reduce potential fatigue. 

Two participants in Experiment 1 provided incomplete 
data (final n = 27). Participants completed TSP problems 
presented using the Psychology Experiment Building 
Language v. 0.14 (PEBL; Mueller, 2014) TSP. PEBL TSP 
problems begin in a fixed starting location, with the last 
segment automatically completed by the software, and route 
edits are not allowed (see Mueller et al., 2015).  

Participants in Experiment 1 completed 5 6-city practice 
problems, then 15-problem sets presented in random order, 
each containing 10, 20, or 30 cities for 50 total trials. 
Participants in Experiment 2 completed their trials in 2 
blocks, each containing 5 6-city practice problems, then 5-
problem sets each containing 10, 20, and 30 cities presented 
in random order, for a total of 40 trials between both blocks.   

Dataset 3 
Data for this analysis were provided by Chronicle, 
MacGregor, Lee, Ormerod, and Hughes (2008). In that study, 
110 University of Hawaii students completed 9 30-city 
problems by connecting the cities using pen and paper; the 
data were converted into electronic format manually.  

Analyses 
Traditional descriptive statistics of solution lengths relative 
to optimal are reported for the first two experiments. We used 
a novel method, reverse solution analysis, to investigate the 
solutions for bias toward ETF and DFC. ETF was 
operationalized here as the cumulative sum of all segments in 
the solution weighted by serial order of visitation. DFC is 
defined as the length of the first segment.  

Reverse Solution Analysis  
TSP solutions begin and end on the same city; they are closed 
loops. Therefore, a solution and its reverse form are equal in 
solution length (the only consideration by which solutions are 
evaluated in TSP). However, the two solutions may differ in 
terms of ETF or DFC (or other criteria of solution quality). 
We report bias toward a given consideration in the observed 
distribution when the percentage of solutions superior to their 
reverse forms with respect to that consideration exceeds that 
of the expected distribution in which both forms appear with 
equal frequency. The observed percentage over the expected 
percentage (50%) indicates the magnitude of the bias.  

Because the PEBL TSP script automatically completes the 
last segment of solutions, these biases will be calculated for 
both the closed and open solutions, which omit the final 
segment returning to home. Note that Dataset 3 was 
generated using a paper and pencil format and required a 
return to home, and was included to show the extent to which 
automatic solution completion impacts performance. 

Results and Discussion 

Solution Length 
Solution length provides a strong measure of overall 
efficiency (Figure 1). In Experiment 1, across all problem 
sizes, participants’ mean solution lengths were 5.30% longer 
than optimal (S.D. = 8.73%). Between set sizes, efficiency 
degraded with increasing problem size. Solutions to the 20-
city problems showed the highest variance in solution length, 
an effect which was mirrored in the Experiment 2 results 
indicating that this likely reflects something about the city 
configurations for those problems.  

 

 
 

Figure 1: Efficiency by Problem Size for All 
Experiments. Error bars indicate standard deviation. 

 
Experiment 2 efficiencies were largely consistent with those 
seen in Experiment 1. On average, participants’ mean 
solution lengths were 6.76% longer than optimal (S.D. = 
12.67%). Between problem sizes, solution lengths increased 
with problem size, though efficiency in the 20- and 30-city 
problems was not notably different. Finally, participants’ 
efficiency in solving the 30-city (M = 6.67%, S.D. = 7%) 
problems in Experiment 3 was consistent with Experiment 1 
performance for problems of the same size.  

Other Solution Considerations 
Of all Experiment 1 solutions (n = 1,358), 317 were optimal 
whereas 93 were designated poor (operationalized as 15% 
longer than optimal). Table 1 shows ETF and DFC bias by 
solution quality, measured using reverse solution analysis. 
Each block of cells indicates the percentage of solutions that 
favor that particular criterion given solutions of equal length.  

The ETF bias block presents solutions quantified as either 
closed (complete, as generated by participants) or open 
(without the return to home). These results indicate the 
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presence of ETF bias in the complete solutions. The 
magnitude of this effect appears consistent with that observed 
by Tenbrink and Wiener toward prioritizing larger versus 
smaller clusters earlier in the solution (2009; 58%). However, 
this effect is smaller when considering the solutions without 
the return to home. No clear trend in ETF bias was observed 
with respect to solution quality. DFC bias was also detected 
in these solutions, and the effects are likely related.  

 
Table 1: Experiment 1 RSA Results, ETF and DFC Biases 
 

 
To visualize this effect, we plotted the proportional distance 
of the solution covered by each segment in serial order 
(Figure 2). ETF and DFC biases are evidenced by shorter 
moves earlier in the solutions, or on the first move, 
respectively. Figure 2 shows reasonably uniform segment 
lengths for all except the final segment, indicating that most 
(but not all) of the bias effect appears to be explainable by a 
failure to account for the return to home cost.   

 

 
 

Figure 2: Proportion of problem space covered by each 
segment across Experiment 1 problems, by problem size.  

The results of Experiment 1 show a robust bias toward 
solution forms that visit cities earlier in the solution at the 
expense of costs associated with the return to home.  

In Experiment 2, participants only appeared to fail to 
account for the return to home on the larger 20- and 30-city 
problems, as indicated by their long final segment lengths 
(Figure 3). Aggregated across problem sizes, the results were 
similar to those seen in Experiment 1 with the exception that 
ETF bias disappeared entirely for the open solutions, and was 
not related to solution quality (Table 2).     

 
Table 2: Experiment 2 RSA Results, ETF and DFC Biases 
 

 
 

 
 

Figure 3: Proportion of problem space covered by each 
segment across Experiment 2 problems, by problem size. 

 
Visualizing these data at a coarser grain size reveals ETF bias 
in the 6-city problems, and a trend toward it in the 10-city 
problems, with longer moves generally appearing in the 
second halves of the solution (Figure 4), despite no clear 
failure to return home. 

ETF Bias 
 

Solution Quality 

Percent 
Favoring 

ETF 
Binomial Test 
Significance 

Closed 
Solutions 

Optimal Solutions 64.98 p < .001* 
All Solutions 63.40 p < .001* 

Poor Solutions 70.97 p < .001* 

Open 
Solutions 

Optimal Solutions 56.80 p = .018* 
All Solutions 52.30 p = .098 

Poor Solutions 45.16 p = .417 

DFC Bias 
 

Solution Quality 

Percent 
Favoring 

DFC 
Binomial Test 
Significance 

Closed 
Solutions 

Optimal Solutions 67.19 p < .001* 
All Solutions 68.56 p < .001* 

Poor Solutions 80.65 p < .001* 

ETF Bias 
 

Solution Quality 

Percent 
Favoring 

ETF 
Binomial Test 
Significance 

Closed 
Solutions 

Optimal Solutions 59.84 p < .001* 
All Solutions 60.21 p < .001* 

Poor Solutions 60.74 p = .008* 

Open 
Solutions 

Optimal Solutions 51.71 p = .539 
All Solutions 51.21 p = .378 

Poor Solutions 46.01 p = .347 

DFC Bias 
 

Solution Quality 

Percent 
Favoring 

DFC 
Binomial Test 
Significance 

Closed 
Solutions 

Optimal Solutions 55.64 p = .031* 
All Solutions 65.14 p < .001* 

Poor Solutions 75.46 p < .001* 
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Figure 4: Distance covered by each half of the solution, 
Experiment 2. Lower values in first half indicate ETF bias. 

 
One potential explanation for this effect is that it is an 

artifact of the experimental software. The PEBL TSP 
automatically completes solutions, so it is possible that 
participants’ failure to account for the return home arises 
from the fact that they are not required to complete this 
section of the solution. Therefore, analysis of Dataset 3 tested 
for this effect in a paper and pencil version of TSP.  

Dataset 3 consisted of 975 solutions to 9 30-city problems. 
56.82% of these solutions favored the ETF-superior form 
(binomial test, p < .001) with 63.18% of solutions favoring 
the DFC-superior form (binomial test, p < .001). Figure 5 
shows a strong failure to account for the return to home cost 
in all but one problem (Problem 3044).  

 

 
 

Figure 5. Proportion of problem space covered by each 
segment across each of the Dataset 3 problems. 

 
To estimate the magnitude of the effect of the DFC bias and 
the failure to return home in each of these experiments, we 
divided the first and final segment lengths, respectively, by 
the average segment lengths (Table 3). One-way ANOVAs 
found significant effects of final / average segment length by 

solution quality for both Experiment 1, F(1, 1356) = 94.85, p 
< .001, and Experiment 2, F(1, 953) = 165.1, p < .001.  
 
Table 3: First, Final / Average Relative Segment Length by  

Solution Quality, Mean Percent (S.D.) 
 

Note: Solutions not aggregated by quality for Dataset 3 as 
optimal solutions to these problems were not available. 
 
For Experiments 1 and 2, the average final segment length 
ranged from slightly shorter to over 2.5 times as long as the 
average segment length, with the paper and pencil TSP 
(Dataset 3) producing results falling somewhere in the 
middle. For Experiments 1 and 2, the final segment length 
generally increased as solution quality degraded, with the 
optimal solutions having much shorter final segment lengths 
relative to average than the poor solutions.  

Similar effects were not observed for first / average 
segment lengths in Experiment 1, but the effect of solution 
quality on first / average segment lengths was observed in 
Experiment 2, F(1, 953) = 6.89, p = .008, with the better 
solutions producing shorter first segment lengths relative to 
average. First segment lengths in Dataset 3 were longer than 
average, though a causal mechanism is not readily apparent.  

Finally, in Experiments 1 and 2 the larger problem sizes 
generally produced longer first and final segment lengths 
relative to average (see Table 4). One way ANOVAs revealed 
significant effects of problem size on first, F(1, 1048) = 
11.79, p < .001, and final, F(1, 1048) = 102.60, p < .001, 
segment lengths in Experiment 2. The effect of problem size 
on segment length was observed for the final, F(1, 1356) = 
20.66, p < .001, but not first, F(1, 1356) = 0.07, p = .799, 
segment lengths in Experiment 1.  

 
Table 4: First, Final / Average Relative Segment Length by  

Problem Size, Mean Percent (S.D.) 
 

 Solution 
Quality Experiment 1 Experiment 2 Dataset 3 

First 
Segment 

Optimal 
Solutions 

94.06 %  
(56.04 %) 

85.86 % 
(52.82 %)  

All 
Solutions 

98.01 %  
(63.55 %) 

88.45 % 
(62.53 %) 

120.13 % 
(88.30 %) 

Poor 
Solutions 

100.24 % 
(91.07 %) 

101.89 % 
(96.91 %) 

 

Final 
Segment 

Optimal 
Solutions 

126.89 % 
(61.98 %) 

98.03 %  
(60.89 %) 

176.25 % 
(132.83 %) 

All 
Solutions 

155.54 % 
(98.90 %) 

148.41 % 
(111.09 %) 

Poor 
Solutions 

259.48 % 
(175.10 %) 

226.37 % 
(171.83 %) 

 Problem 
Size Experiment 1 Experiment 2 

First 
Segment 

6 96.97 % (71.42 %) 83.61 % (57.00 %) 
10 97.49 % (59.66 %) 93.44 % (49.89 %) 
20 98.26 % (68.03 %) 69.56 % (61.06 %) 
30 96.06 % (62.04 %) 110.68 % (81.85 %) 

Final 
Segment 

6 145.34 % (77.70 %) 113.43 % (77.11 %) 
10 143.07 % (78.29 %) 102.76 % (58.71 %) 
20 152.12 % (102.05 %) 175.07 % (141.70 %) 
30 175.39 % (129.40 %) 183.84 % (137.20 %) 
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Human Results Summary and Discussion 
The results presented above demonstrate, for the first time to 
our knowledge, the presence of considerations pertinent to 
naturalistic TSP-like tasks in traditional TSP solutions. 
Participants (1) produced solutions that reduce distance to 
first contact and (2) preferred visiting locations early in the 
solution at the expense of overall solution length, resulting in 
higher distance-discounted reward. However, (3) this effect 
is driven largely by a preference for solution forms with a 
longer return to home. (4) This effect is robust to the test 
delivery format (i.e., computer with an automatic return to 
home versus manual pen and paper format) and (5) the 
magnitude of this bias is related to the quality of the closed 
solutions – better solutions reduce the discrepancy between 
final and average segment lengths.  

Points 1 and 2 suggest that humans solve a more general 
problem than TSP task instructions would require; in addition 
to solution length, humans consider ETF and DFC during 
problem solving. And, in light of the constraint of point 3, 
they seem to do so at the expense of task performance, though 
better human solutions tend to consider the problem space 
more globally, therefore accounting for the return home. 

Subject matter expert interviews (Perelman, 2015) indicate 
that ETF and DFC are critical for certain tasks, and prior 
research (Perelman & Mueller, 2015) has shown that humans 
can adapt their solution criteria to fit specific tasks. However, 
the results of the present study show that even when tasked 
with minimizing solution length in a traditional TSP, humans 
still generate solutions that account for considerations 
relevant in naturalistic spatial problem solving tasks. This 
suggests a common mechanism used for both TSP, and for 
naturalistic TSP-like tasks. A simple computational model 
was developed by Perelman (2015) to describe adaptive 
behavior in TSP-like problems, which we apply here to 
investigate an underlying adaptive mechanism capable of 
producing the above effects in TSP.  

Modeling 
In light of the human results, we used a computational model 
designed to permit this flexibility in strategic control that is 
capable of solving TSPs using limited at-a-glance 
information about the problem space. The goal of this model 
was to use a scheme capable of adapting to task requirements 
(i.e., it incorporates strategic considerations such as ETF into 
solution planning) to reproduce human efficiency dynamics 
and solution characteristics, specifically the bias toward ETF-
superior solution forms.  

The model uses a two-layer hierarchical structure: a 
computationally inexpensive local decision making 
algorithm (nearest neighbor) guided by a general plan (see 
Figure 6) that considers multiple criteria that can be tailored 
to specific goals and tasks (i.e., path length minimization, as 
in TSP, versus discounted-rewards used in naturalistic tasks). 
This higher level plan representation consists of a small 
number of segments; the model solves for all the cities within 
each segment in sequence. The plan is initially drawn by 
running K-means clustering over the problem space (k = 6) 

then connecting the cluster centroids from the starting 
position by nearest neighbor. 

  

 
 

Figure 6. The higher level plan (red segments) guides local 
solutions (black lines) among the cities (black dots) from the 

start location (red; first move is green to show direction) 
 

 The plan is then iteratively fit to the data by minimizing a 
cost function comprised of a linear combination of five 
weighted parameters, (1) log number of segments, intended 
to represent plan complexity, (2) goodness of fit, the average 
distance between a plan segment and its constituent cities, (3) 
plan length, (4) distance-discounted reward, the sum of the 
path lengths of all segments discounted by their serial order, 
and (5) the average angle between segments, intended to 
penalize doubling back. This plan is fit to the data using 500 
iterations during which a point in the plan is added, deleted, 
moved, or swapped in serial order with another. This 
optimization process was not intended to duplicate that used 
by humans to solve the problem, but rather to demonstrate 
that a model that incorporates multiple criteria can account 
for some patterns in the human data. 
 
Modeling Results 
The present model solved the 10-, 20-, and 30-city TSP 
problems used in Experiment 1 20 times each, and the 
solutions were analyzed using the methods described above.  
 
Solution Length 
To evaluate model solution efficiency, solution lengths were 
compared to those of the optimal solutions. Across all 
problem sizes, model solutions lengths were 16.08% longer 
than optimal (S.D. = 11.56%). Interestingly, as with the 
human subjects, the model produced the greatest variance in 
solving the 20-city problems (Figure 7), indicating that 
human performance on these problems can be attributed to 
properties of the problem spaces rather than a fluke in our 
particular sample. While the model was less efficient than 
humans, it displayed similar dynamics in the present problem 
set for the change in solution quality at the experimental 
problem sizes, and variance within set sizes.  
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Figure 7. Model solution length by problem size. Error 
bars indicate standard deviation. 

 
The second goal for our model was to replicate the human 

bias toward DFC- and ETF-superior solution forms. We 
investigated the model solutions using the method applied to 
the previous experiments and found that the model favored 
ETF- and DFC-superior solutions more strongly than humans 
(Table 5), preferring a biased solution in nearly every case 
except for the 20-city problems. Figure 8 demonstrates 
qualitatively the effects of ETF and DFC bias in the model’s 
solutions, along with a failure to account for the return to 
home producing segments roughly twice as long as average.  
 

 
 

Figure 8: Proportion of problem space covered by each 
segment across Experiment 1 problems, by problem size. 
 
As with the human solutions, we further quantified the ETF 

and DFC biases, and the effect of the failure to return home, 
by comparing the first and final segment lengths, 
respectively, to the lengths of the average segments on those 
trials. The model produced solutions with values (Table 5) 
similar to those of the poor human solutions (Table 3), 
including comparatively short first segment lengths, and long 
final segment lengths (i.e., the return to home) that increased 
with problem size. However, unlike the human solutions, the 
model produced solutions with first segment lengths that 
decreased with increasing problem size relative to the 
average segment lengths on those trials. Finally, the model 
produced solutions with shorter relative first segment lengths, 
but longer final relative segment lengths, compared to the 
human solutions.  
 

Table 5: Final / Average Segment, Mean Percent (S.D.), and 
Proportion of Solutions Favoring Each Bias 

Last, we investigated a potential criticism of the present 
model – that a nearest neighbor model would be equally 
efficient. We compared model and human solution lengths to 
those generated using nearest neighbor. The present model 
produced solutions to the 10-city problems that were 4.1% 
shorter than nearest neighbor, equal in length for the 20-city 
problems, and 1.1% shorter for the 30-city problems. Human 
solutions in Experiment 1 generally showed a similar pattern 
(6%, 10% and 10%, respectively), though the poor human 
solutions were on average 3-9% longer than those produced 
by nearest neighbor. In summary, the model solutions were 
less efficient than human solutions on average, but more 
efficient than the nearest neighbor and poor human solutions.  

General Discussion 
The behavioral results of the present study show, for the first 
time, that human TSP solutions consider ETF and DFC, 
criteria that are irrelevant to TSP, but critical in the real 
world. This manifested here as a failure to account for the 
return to home, and the magnitude of this bias was related to 
solution quality – poor solutions had longer final segments. 

A model that adjusts a linear plan to fit the problem space 
according to a number of criteria related to TSP, real-world 
TSP-like problems, and plan complexity, exhibits behavior 
similar to humans in this task. We expect that efficiency 
could be greatly improved via dynamic re-planning to match 
the human data. In adapting the present model, the agent 
would adjust its higher level plan after solving for the points 
within each segment in serial order. In this way, a parameter 
estimated from prior eyetracking studies (e.g., Kong & 
Schunn, 2007) would govern the iterations spent in dynamic 
replanning. 

Taken together, the results of the present study hold 
implications for modeling human performance in spatial 
combinatorial optimization problems. Specifically, the 
results speak to the importance of granularity and sequence 
in representing the problem space. Many algorithms, such as 
those implementing a convex hull, solve the problem 
exhaustively at presentation. The behavioral and modeling 
results presented here are consistent with prior work 
suggesting that humans approach these problems using a 
mechanism that provides a means of solving the problem 
efficiently without the mental burden of generating and 
maintaining an exhaustive solution in memory, at the expense 
of efficiency later in the route. Finally, this mechanism is 
consistent with producing solutions to discounted-reward 
problems that are more common than path length 
optimization in naturalistic tasks. 

 10 Cities 20 Cities 30 Cities 
First  / Average 
Segment Length 

79.16 % 
(41.91 %) 

70.85 % 
(31.93 %) 

67.95 % 
(25.90%) 

Final / Average 
Segment Length 

205.85 % 
(56.19 %) 

257.52 % 
(114.72 %) 

327.16 % 
(138.09 %) 

Percent Favoring ETF 99.33 % 89.67 % 100 % 
Percent Favoring DFC 100 % 94.33 % 100 % 
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