
Concept Learning, Recall, and Blending with Regulated Activation Networks
Alexandre Miguel Pinto (ampinto@dei.uc.pt), Rahul Sharma (rahul@dei.uc.pt)

CISUC - Department of Informatics Engineering, University of Coimbra, Portugal

Herein we present the cognitive model Regulated Acti-
vation Networks (RANs), which aims at unifying the three
perspectives (symbolic, connectionist, and geometric feature-
space) of conceptual representations. It learns new concepts
from input data, dynamically builds a hierarchy of abstract
concepts, and learns the associations among them, both be-
tween different levels, and within the same level of the hier-
archy. Its recall mechanism, the geometric backpropagation
algorithm, allows the understanding of the meaning of higher
level concepts in terms of input level features. The regulation
mechanism we also introduce has a de-noising effect over the
results obtained from the recall mechanism.
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Design, Methodology and Approach
The Regulated Activation Networks (RANs) model is based
upon the Principles laid out in (Pinto & Barroso, 2014),
and its geometric interpretation is inspired from the theory
of conceptual spaces(Gärdenfors, 2004) whereby concepts
are regions in multidimensional spaces (dimension = fea-
ture). Topologically, a RAN is a connectionist model where
each node represents one dimension/feature and its activa-
tion value represents the concept’s value (in the interval [0,1])
along that dimension. An instance of the model is initialized
with one layer of nodes – one node per input data feature
– and dynamically builds new nodes and new layers solely
driven by the complexity in the input data.

Inter-Layer Learning As the model’s instance is exposed
to input data, it resorts to some user-specified clustering algo-
rithm to identify centroids of clusters in the data. The RANs
model then creates one new node per centroid in a higher
layer. The coordinates of each centroid are encoded as the
inter-layer weights w

m,n associated to the edges between the
newly created centroid-node n and the nodes m in the lower
input layer. After the creation of the second layer of nodes,
each input datum (with values in the first layer of feature/node
space) can be re-represented in the second layer of centroid/n-
ode space – we obtain this re-representation via our upward

activation propagation algorithm.

Upward activation propagation This algorithm takes an
activation pattern, i.e., the coordinate values, at layer L and
calculates its normalized squared euclidean distance to each
centroid in layer L + 1. These distances are then passed
through a non-linear radial basis function (in this paper we
used f (x) = (1� 3p

x)2 but it can be replaced by any other
similarly behaving function) that behaves as an activation/-
transfer function – the smaller the distance, the higher the
activation of the corresponding centroid. This results in an

activation pattern in layer L+1 with one activation value for
each of its centroid nodes. Figure 1 illustrates a RANs in-
stance with two layers: L and L + 1, where L has i nodes
(n1,n2, . . . ,ni

) with (a1,a2, . . . ,ai

) corresponding activation
values; and layer L + 1 has j nodes (N1,N2, . . . ,Nj

) with
(a1,a2, . . . ,a j

) activations.

Figure 1: Learning in RANs

Intra-Layer Learning As lower layer L activation patterns
get re-represented in the upper layer L+1 via upwards propa-
gation, a pairwise correlation calculation takes place ate layer
L+ 1: the intra-layer learning. These correlations are calcu-
lated via equation 1 and their values are stored as weights of
the connections between the corresponding nodes.
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In the numerator the part (1� |ak
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|) calculates the sim-
ilarity of activations among nodes m and n, and the product
(1�a

k

m

)⇤ (1�a

k

n

) is used to reduce the impact of the similar-
ity when both activations are very close to 0 albeit similar.

Recall Concept recall amounts to obtaining, at the input
feature space level, the representation of the selected higher
concept node(s). Our geometric downward propagation algo-
rithm works as follows: the user selects how strongly (s)he
wishes to recall which higher layer concept(s) by injecting
the corresponding activations A j in their layer L+ 1; the al-
gorithm generates a random activation pattern in layer L be-
low, propagates it upward to obtain actual activation A

0
j

, and
calculates the error e

j

= A

0
j

�A

j

; we use these individual er-
rors to adjust the activation a

i

of each node i in layer L below

via D
a

i

= (
j

Â
1

D
a

i

,A
j

)/(# j) where D
a

i

,A
j

= (W
j,i�a

i

)⇤ (e
j

), with

W

j,i being the coordinate of centroid j in layer L+ 1 along
dimension-node i in layer L. The overall impact of a

i

on
all A

j

is summed together and normalized by dividing with
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maximum possible impact i.e. # j. Finally, the geometric er-
ror correction at node i of layer l is obtained by : if D

a

i

>=
0 then a
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The cycle <upwards propagation; error calculation; lower
layer activation pattern correction via the error> is repeated
until convergence of the lower layer activation pattern.

Regulation The recall results obtained are reasonable, but
noisy. To denoise recall results a complementary Intra-Layer
(IL) activation formula is developed which uses intra-layer
weights to estimate each node’s expected activation according
to its same-layer companion nodes via

IL(a
n

) =
Â
m

s
m!n

[(a
m

⇤W

m!n

)+(1�a

m

)⇤ (1�W

m!n

)]

Â
m

s
m!n

(2)
Here W

m!n

is the intra-layer weight learned as in equation
(1), and s

m!n

(= [2 ⇤ |W
m!n

� 0.5|]2) is the impact factor
of each correlation: W

m!n=0.5 indicates high probability that
node m has minimal (or no) impact over node n.

Our regulation mechanism uses IL activation producing a
regulated activation pr(a

n

) = (1�r)⇤a

n

+r⇤ IL(a
n

), where
r is regulation-factor(a constant in [0,1]).

Experiments and Observations
First experiment We generated an artificial data set of 300
2-dimensional data points, c.f. Fig. 2.

Figure 2: Observations on 2-D artificial data set

Setup The artificial data was generated such that it had 3
distinct clusters. We used K-means (MacQueen, 1967) to
identify the clusters. The RANs model created 3 nodes in
the first new layer (2nd layer), and 1 node in the second new
layer (3rd layer), c.f., Fig. 3. To simulate recall we input the

Figure 3: 3 layered model for artificial data

activation pattern [1,0,0] in the second layer as expected ac-
tivation (in Fig. 2 black circles represents centers of clusters

and their sizes depict expected activations) and initiate the
downwards propagation experiment.

Table 1: Observation of Artificial Data
Starting
Layer 1 Act.

Expected
Layer 2 Act.

Regulation
Factor (%)

Obtained
Layer 2 Act.

[0.28 0.58] [1 0 0 ] 0 [ 0.60 0.1 0.12]
7.5 [ 0.68 0.21 0.25]

Observations The algorithm randomly chooses a starting
point ([0.28,0.58]) and then repeats the ¡upwards activation
propagation; error geometric downpropagation¿ cycle up to
a maximum of 1000 iterations times; we did this for both
with and without regulation. Fig. 2 shows the trajectories
(each trajectory is a succession of points in the 2-D input
feature space corresponding to the activations of the 2 bot-
tom layer nodes) in 2-D. As per the expectation the trajectory
obtained from regulation converges closer to the highly ac-
tive center. Table 1 shows the activation at nodes in layer
2 corresponding to the converged points (without regulation
[1,0.52], with regulation [0.78,0.47]) in layer 1.

Blending Experiment with the MNIST data set We per-
formed the experiment for blending (simultaneous recall of
multiple concepts resulting in their fusion) using the MNIST
(The MNIST database of handwritten digits, n.d.) data set
with 250 images, and K-means which identified 31 clusters
whose centroids are shown in Fig. 4. We create just two lay-
ers to show the concept blending operation – layer 1 has 784
nodes representing the pixels, layer 2 has 31 nodes.

Figure 4: Images represented by nodes in layer 2

Blends are obtained by injecting full activation (1) at nodes
in layer 2 representing the concepts to blend, and by down-
wards geometric backpropagation. E.g., injecting 1 at nodes
6, 8, 25, 27, and 28 (these nodes correspond to images of dig-
its 2 and 5, c.f., Fig. 4), and zeros in others we obtain the
blend shown in the left-most image of Fig.5. In Fig. 5, the
2nd left image is a blend of 4’s and 9’s, the 3rd is a blend of
8’s and 3’s, and the last is a blend of 5’s and 3’s. These are
not mere superpositions of the original clusters.

Figure 5: Blend of different centers
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