Website Analysis: Penn State Club Cheerleading

December 17th, 2007

Team Sixas
Lauren Kramer
Tulsi Pathak
Andrew Shumaker
Mark Tufano
Abstract
When designing a website, it is important to consider numerous aspects of user behavior. By studying these behaviors and implementing modifications, web interfaces can be improved dramatically. Through a task, learning, and visual perception analysis, we aimed to develop a more efficient website for Penn State Club Cheerleading.
1. Introduction
Today, companies and organizations are increasingly using the Internet to display information. This is a wise strategy because the Internet allows for data to be spread more quickly than traditional methods, and to more individuals. The utilization of web pages, for example, allows organizations to display information for visitors to swiftly scan through, and use. With the aid of software tools, websites have improved dramatically, allowing developers to make web pages more lively and user friendly. However, inadequate web pages still exist everywhere, and the causes vary greatly. In our study, we analyze the design problems that limit the usability of the Penn State Club Cheerleading website. By performing a task, learning, and perceptual analysis we provide insight into improving the Penn State Club Cheerleading website.

2. Background Information
Penn State Club Cheerleading is a university recognized club sport that began in 2003. The club was founded by a student that wanted to provide cheerleaders, whom were not a member of varsity team, the opportunity to continue competing. Over the years, the team has gained national recognition and actively competes against other top college teams. PSU Club Cheerleading continues to recruit annually. The program is rapidly growing, yet PSU Club Cheerleading is still actively seeking a medium for recruiting new members, displaying team information, and sharing pictures and videos. The PSU Club Cheerleading current website, located at www.psuclubcheerleading.com, has the potential to be an excellent resource for carrying out team goals.

3. Current Issues
However, the current interface design has limited the effectiveness of their website. In order to design an adequate interface for the PSU Club Cheerleading website, it is important to recognize the website’s functions, users, and content. While the main purpose of the site is to recruit prospective members, it is also used to provide general information about the team, its history, standings, media, and representation of Penn State’s Club Sports programs. As it currently stands, the PSU Club Cheerleading website contains a short history of the team, a small background on the coach, and a handful of photographs and videos from competitions.
4. Task Analysis

Introduction
When evaluating the Penn State Club Cheerleading website, we first decided to perform a task analysis. Task analyses are a very useful technique that designers use when evaluating an interface. There are various forms of task analyses that can be used for a number of purposes such as predicting the time to complete a task, predicting the steps users will take to complete the task, and comparing designs. In our experiment, we performed a GOMs and KLM task analysis on users’ ability to complete two tasks using the Penn State Club Cheerleading website:

1. Locate the Penn State Club Cheerleading homepage, which displays the text, “Welcome to the home of Penn State Club Cheerleading”.
2. Locate, and open the full-sized image titled, “2007 National Team”.

The results from these tests were then used to develop an improved prototype that would reduce steps, thus improving the time to complete each task.

Methods of Analysis
Both tasks were analyzed using the Keystroke Level Model (KLM), which is used to predict the amount of time it takes users to complete a task. To perform a KLM analysis, each task was broken down into their appropriate steps, and assigned to one of the four KLM components. KLM components consist of Keystrokes (K), Pointing (P), Homing (H), Drawing (D), and Mental Processing (M) (Ritter, 180). The sum of the amount of time taken to complete each step was then used to predict how long it took users to perform each task. The KLM analysis for the current website is illustrated in Appendix A and Appendix D for the prototype website.

Next, the GOMs Model was used to make predictions on improving overall interface design. The GOMs model studies human computer interaction (HCI) by breaking down the steps it takes a user to operate a system into: Goals, Operators, Methods, and Selection Rules. In this case, the goals were the two tasks that subjects had to complete, while operators were the actions that users performed. Methods determined the sequence operators to complete the task. Finally, the selection rules were the ways the user chose to reach their goal (GOMs, Model 4). By using the GOMs model, we were able to use results from KLM, a GOMs technique, to reduce the steps needed to complete tasks. The GOMs Model analyses can be seen in Appendix B (current site), and Appendix D (prototype).

Methodology
After performing a KLM and GOMs analysis for each task, we physically tested the time it took a user to complete the tasks using both the current and prototype website. The participants used
for the experiment were six male students in the age group of 18-21. The participants had no prior knowledge of the website, or its structure. Three subjects were tested performing the tasks using the current interface, and three were tested using the prototype. We opted running the same individuals for both interfaces to prevent subjects from obtaining any useful knowledge from either of the websites.

For both tasks, subjects were placed in front of a computer running the Windows operating system. Each subject was given a sheet of paper that outlined the two tasks. These task instructions, shown above, can also be seen in Appendix C. The instructions were slightly modified for the prototype interface due to the differences in design. Before beginning Task 1, subjects were presented with an empty Firefox web browser, with the cursor located in the middle of the screen. Time was recorded using an online stopwatch, which was activated when the subject initially touched the mouse, and was stopped when the task was completed. Task 2 was tested similarly; however, the starting point was the homepage rather than an empty browser. Each subject was tested performing the task five times.

Results
The results of the experiment can be seen below.

Current
Based on our KLM analysis, the predicted results for Task 1 and Task 2 calculated a 12.5 second response time, and a 12.6 second response time, respectively. Table 1.1 displays the predicted results, and Table 1.2 and Table 1.3 display the actual results.

<table>
<thead>
<tr>
<th>Task 1</th>
<th>Task 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>12.6</td>
</tr>
</tbody>
</table>

Table 1.1. KLM Predicted Times (s)

<table>
<thead>
<tr>
<th>Trial</th>
<th>Subject 1</th>
<th>Subject 2</th>
<th>Subject 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.85</td>
<td>16.27</td>
<td>19.47</td>
</tr>
<tr>
<td>2</td>
<td>12.76</td>
<td>12.01</td>
<td>15.02</td>
</tr>
<tr>
<td>3</td>
<td>9.18</td>
<td>12.89</td>
<td>14.79</td>
</tr>
<tr>
<td>4</td>
<td>9.08</td>
<td>11.77</td>
<td>14.12</td>
</tr>
<tr>
<td>5</td>
<td>8.36</td>
<td>10.96</td>
<td>13.58</td>
</tr>
</tbody>
</table>

Table 1.2. Actual Times (s) Task 1
Table 1.3. Actual Times (s) Task 2

The actual time it took subjects to perform the two tasks were lower than the predicted times.

Prototype

Based on the KLM, predicted times for completing Tasks 1 and 2 were lower. The predicted times were 9.09s for Task 1, and 10.1 for Task 2. Table 2.1 displays predicted results, and Table 2.2 and Table 2.3 display the actual results.

<table>
<thead>
<tr>
<th></th>
<th>Task 1</th>
<th>Task 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.09</td>
<td>10.1</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.1. KLM Predicted Times (s)

Table 2.2. Actual Times (s) Task 1

Table 2.3. Actual Times (s) Task 2
Similar to the results of the current site, the actual times were less than the predicted times. However, from our observation, users completed the tasks much more efficiently using the prototype.

Analysis
The KLM and GOMs analyses were used to provide insight on improving the PSU Club Cheerleading website. In our study, the Task analysis was used to observe HCI in a few different ways: to understand user behavior, allow time predictions, create a new system based off of an old system, and to compare designs (Ritter, 172). By performing a task analysis, we were able to identify the areas where design could be improved. These results were considered when creating the new prototype. When creating the prototype, our main concern was allowing the user to logically complete their goal in the least amount of steps.

As expected, the prototype verified there were improvements in the time it took subjects to complete a task. Based on the KLM and GOMs analyses of the current site, we modified the site by removing the title page, and reducing the amount of links it took to access the “2007 National Team” photo. Task 1 was improved by simply removing the title page allowing users to directly access the homepage upon typing in the web address. This change reduced the predicted task completion time by 3.41 seconds. For task 2, we modified the links to allow for better organization. This is shown below.

![Figure 1.1. Current Menu Combine Photo and Video Links](image-url)
By separating the Photos and Videos links as seen in the prototype, users can access the photos one step quicker. Furthermore, when a user selects the Photos link they are taken to a Photos page containing all the photos on the site compared to the current interface which separates the photos between two links: “National 2007” and “Camp 2007”. This is shown below in Figure 1.3:
Figure 1.4. Prototype Photo Links Combined on Single Page

The overall change reduced the predicted time by 2.5 seconds. It is also important to note the changes made in the prototype reduced actual task completion time even greater. A full visual analysis of the completion of each task in both the current site and prototype site can be seen in Appendix F.

The results from the Task Analysis showed that the prototype was more superior compared to the current site. By applying the task analysis to other aspects of the website, the site can be greatly improved. Through beneficial modifications in site navigation, arrangement, and other design elements, the PSU Club Cheerleading team can develop a more productive website.

5. Learning Analysis

Introduction

Interfaces can be complicated. Although users will eventually learn and improve in speed when performing tasks, it is important for an interface to provide users with sufficient information to allow them to perform the task, or at least start to explore the environment. In other words, users should have declarative information about a certain task before they can perform it (Ritter, 121). Therefore, interfaces should supply users with instructions, manuals, web resources, other users, and if an interface is very complex, training.

There are two types of learning: declarative and procedural. Declarative learning is the process at which individuals learn facts. While procedural learning is the process at which individuals learn through procedures. When learning a new procedural task, users generally improve their performance as they repeat trials. Typically, user performance gets faster, requires less effort, and has fewer errors (Ritter, 112). However, improvements in learning decrease with each trial. This is also known as the learning curve. Learning is important because it improves memory retrieval speed, aids users in adapting to unfamiliar situations, and allows for quicker reaction
times. There are many implications for learning, especially in interface design. This section will further elaborate on these implications by providing insight into the importance of user learning in interfaces, and will also compare user learnability in the current Penn State Club Cheerleading website with a prototype interface.

Methodology
In order to analyze the learning curves of users, we tested subjects to perform a specified set of instructions to complete a task. In other words, we tested subjects to see how fast they found a given section of the website. Then we had them repeat the task to see how they improved from their original trial. Refer to the Task Analysis section for the methodology, as the tests conducted were used for both the Task and Learning analyses. Keep in mind they examined separate aspects of the experiment.

Results
Each subject understood the instructions well and did not have much trouble navigating through the website. We recognized that there was a dramatic time improvement in the second trial as opposed to the first. Although trends showed that all subjects generally had an improvement in time, not all trials were faster than the previous ones. The figures below portray the learning curves in each of the tasks for both the current and prototype interfaces.

![Learning Curve: Current Website Task 1](image)

Figure 2.1. Current Website Task 1 – Navigating to the homepage.
Figure 2.2. Current Website Task 2 – Finding the “2007 Nationals Team” photo.

Figure 2.3. Prototype Website Task 1 – Navigating to the homepage.
From observing the data, we concluded that all subjects tested went through a learning process when performing their tasks. However, there were differences in the two versions of the website. In Task 1, it took current website subjects 13.01 seconds on average to navigate to the Penn State Club Cheerleading website as opposed to prototype version subjects 9.12 seconds. It took subjects an average of 3.89 seconds longer just to navigate to the homepage using the current website. This same trend can also be seen in Task 2. Current website subjects took an average of 9.01 seconds, and prototype website subjects an average of 7.42 seconds to find the “2007 Nationals Team” photo. Based on these results, we found that the prototype interface improved the learning curve, reaction time, and ease of learning when performing tasks.

6. Visual Perception Analysis

Introduction
Whether it is searching for an individual in a crowd, trying to find a cell phone in a room, or locating a button on a remote control, individuals follow the same psychological procedure when looking for an object. The mental process, known as visual search, involves scanning an environment to locate a specific object, and contextualizing it based on that individual’s prior knowledge. Visual perception is important to consider because, sensually we rely most on our vision. If our senses conflict with each other, our brains usually believe our vision more than the others (Reisburg, 2001). This website study provided significant insight into the methods used to determine how users exercise their vision, when recognizing important objects. By comparing and contrasting the colors, font sizes, and organization of each cheerleading website, we were able to determine how effective each site would be among their users. As visual searching is
utilized everywhere, it is not surprising that many have taken advantage of this knowledge to better understand human behavior, in regards to interfaces, and to improve numerous tasks and applications.

Our findings regarding visual search are useful in analyzing the design of interfaces. An efficient and effective website is designed to decrease the reaction time needed for users to locate an object. Most individuals scan web pages; web designers must use a variety of methods to isolate objects. Many web pages recognize the importance of color when inserting links on their page. Since users are most frequently searching for such links, web designers use color, as well as bold and underlined text to make links stand out. Many web pages group links, making it very difficult to distinguish between them. Overall, studying visual search is a key aspect of designing effective, navigable websites. With this in mind, we analyzed the Penn State Club Cheerleading website to that of the Oregon State Cheerleading website.

Methodology
We were able to find a cheerleading site from Oregon State University. This website along with the Penn State Club Cheerleading website provided us with the ability to analyze and critique the creator’s tactics, in order to produce an effective reference for individuals interested in the sport of cheerleading. The areas in which we focused were colors, font sizes, and organization. Based off of the information found on each site we were able to create a table to compare which site was most visually sound.

Results
The results from our observations indicated that out of the two websites the Oregon State University Cheerleading website was far more responsive to a user’s visual perception. The following two tables give insight into what we found when comparing both sites.

<table>
<thead>
<tr>
<th>Penn State Club Cheerleading</th>
<th>Oregon State University Cheerleading</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLORS</td>
<td>The colors blue and white have a contrast which provides the user the ability to see all text.</td>
</tr>
<tr>
<td>FONT</td>
<td>The font is inconsistent from page to page.</td>
</tr>
<tr>
<td>ORGANIZATION</td>
<td>The organization of the site lacks detail and meaning. The links lead to more and more links, and other lead to irrelevant information. It would be helpful to have a toolbar of some sort. There were pages that did not load. The page as a whole is not labeled</td>
</tr>
</tbody>
</table>

Table 3.1. Oregon State University Cheerleading Interface Visuals
Table 3.2. Oregon State University Cheerleading Interface Visuals

<table>
<thead>
<tr>
<th>COLORS</th>
<th>The colors offer a clear image of what text are links and which are not.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FONT</td>
<td>The font emphasizes the title and other important information.</td>
</tr>
<tr>
<td>ORGANIZATION</td>
<td>The organization of the site is well thought out. Within the tool bar, each main category has a drop down of relevant links, which lead to the information that pertains to topic.</td>
</tr>
</tbody>
</table>

Analysis

There was a significant lack of detail in the Penn State Club Cheerleading webpage. Although users would be able to understand what is being displayed, they could easily face problems with navigation. An example of this is when entering the site; there is no clear instruction stating to click on the icon to get to the homepage. Figure 3.1 displays a screenshot of what the title page looks like, while Figure 3.2 displays the OSU Cheerleading homepage.

![PSU Cheerleading Title Page](image1)

Figure 3.1. PSU Cheerleading Title Page
Websites have several vigilance tasks necessary for even the most basic uses. Vigilance tasks apply to any decision making tasks (Ritter, 80). The Penn State Club Cheerleading website offers the user the ability to gain knowledge on current and past teams, about coaches, recruitment, etc. According to the Laws of Visual Organization, elements that are similar in size, shape, and color appear to belong together (Ritter, 79). If the Penn State Club Cheerleading site were to use these tactics, it would be more organized.

The Penn State Club Cheerleading site has information spread throughout the page; therefore the user must scroll to get the information that is relevant to them. Often times having excessive scrolling and a homepage without an explanation of how to enter the site deters the user from the site. OSU’s Cheerleading site on the other hand offers users with a site that takes less time to navigate through. Users hardly have to search for what they are looking for. The toolbar on the left side contains links which are general headings. When one of these is clicked, a drop down list appears with more specific links to different pages providing a tree structure.

The color visual search task is an example of a feature search, which uses a basic feature of an object to distinguish it from others (Wolfe, 4). Color has been proven to be one of the most efficient ways of isolating an object. In this analysis, colors were examined in each visual search task. With collegiate websites, it makes sense to use colors with meaning and both of the sites carried this out well. However, there were problems with telling which text fields were hyperlinks on the Penn State Club Cheerleading webpage. Additionally, there were no distinctions between important text and irrelevant text. If font sizes were increased, underlined, or were a different color (creating a “pop out” effect), the site would be more visually efficient.
7. Recommendation
Based on our evaluation of the current interface, and the results of our task, learning, and visual perception analyses, we’ve generated a list of improvements that we believe would greatly benefit the PSU Club Cheerleading website. Our first recommendation is to refine the general look and feel of the interface, including layout, graphics, fonts, etc. A banner or logo for Penn State Club Cheerleading at the top of the page would add authenticity. A Penn State paw, or logo, would help portray school affiliation. A consistent color scheme of blue and white throughout would add to the site’s continuity, and sense of school pride. Figure 4.1 below displays a possible solution.

![Figure 4.1. Penn State Club Cheerleading Authentic Banner](image)

Navigation of the PSU Club Cheerleading site must be modified and improved. This can be done through a navigation bar of links running either horizontally (at the top of the page) or vertically (down the left side of the page) (see Figure 4.2 for an example). The site’s current “click here to enter” page can be removed to reduce the lengthy time associated with simple tasks. This can be remedied by renaming “homepage.htm” to “index.htm.” We also suggest making the site easier to locate through the Penn State server and internal search engine.

![Figure 1.2 Vertical Navigation Bar](image)
The functionality of the PSU Club Cheerleading site should be expanded to cater to all users of the system. Supplying a log-in section (as seen in Figure 4.3) for members will make it easy to keep team-confidential information private for team members and coaches only. Team members and coaches will be able to view this information which may include things such as practice schedules and team member contact information. Meanwhile, only coaches will have extended rights to add content, much like Penn State’s Course Management System, ANGEL.

![Figure 4.3 Log-in Function](image)

Finally, content must be improved and refined, including the addition of content proofreading. Information should be updated accordingly, especially on a proposed “news” page to inform users of the club’s activities. Content should also be added to link to Penn State’s homepage as well as Penn State Sports, to add legitimacy (see Figure 4.4). Missing and broken links, photos, and videos should be repaired to achieve professionalism. We also suggest a calendar of events for team members, as well as a guestbook for fans.

![Figure 4.4 Links to Official University Sites](image)

By implementing these recommendations, we believe that PSU Club Cheerleading can create an efficient, more user-friendly interface for their website. An improved system can lead to better achievement of the club’s goals to attract new members, share and display team information and current activities, and represent the Penn State Club Sports programs. Figure 4.5 below provides our prototype of a proposed solution for the PSU Club Cheerleading web-interface and incorporates the features and suggestions mentioned.
Welcome to the home of Penn State Club Cheerleading!

Figure 4.5 – Proposed Design for the Penn State Club Cheerleading Website
8. Appendix

Appendix A

KLM Analysis: Current Site

KLM Task 1 - Getting to Homepage (http://www.psuclubcheerleading.com/home.htm)

1. Find URL Bar M
2. Point to URL bar H[mouse], HP
3. Highlight URL (triple click of mouse) KKK
4. Type in URL Provided 27K
5. Hit Enter K
6. Find homepage link M
7. Point to link HP
8. Click link K

Total: 2M + 3H + 32K + 2P

\[2(1.35) + 3(0.4) + 32(0.2) + 2(1.1) = 12.5s\]
KLM Task 2 - Open Full Size Image of Picture Titled "2007 Nationals Team"

1. Locate "Photos and Videos" link M

2. Point to "Photos and Videos" link H[mouse], HP

3. Click link K

4. Locate "Photos" link M

5. Point to "Photos" link HP

6. Click "Photos" link K

7. Locate "Nationals 2007" link M

8. Point to "Nationals 2007" link HP

9. Click "Nationals 2007" link K

10. Locate "2007 Nationals Team" Picture/link M
11. Point to "2007 Nationals Team" Picture/link H[mouse], HP
12. Click "2007 Nationals Team" Picture/link K

Total: 4M + 5H + 4K + 3P

\[4(1.35) + 5(0.4) + 4(0.2) + 3(1.1) = 12.6s\]
Appendix B

GOMs Analysis: Current Site

GOMs Task 1 - Getting to Homepage (http://www.psuclubcheerleading.com/home.htm)

Goal: arrive at www.pennstateclubcheerleading.com/home.htm
Method 1: Arrive at Title Page
Step 1: Read task from given sheet
Step 2: Recall information needed to complete task (URL)
Step 3: Enter URL in text field as instructed
Step 4: Achieve goal: Arrive at title page
Step 5: Return with goal accomplished

Method 2: Arrive at home page (destination)
Step 1: Make decision to click team logo
Step 2: Achieve goal: arrive at home page destination
Step 3: Return with goal accomplished
GOMs Task 2 - Open Full Size Image of Picture Titled "2007 Nationals Team"

Goal: open full sized picture titled “2007 Nationals Team”
(http://psuclubcheerleading.com/camoshirts.jpg)

Method 1: Navigate to Photos and Videos page
- Step 1: Read task from given sheet
- Step 2: Recall information needed to complete task (look for Photos)
- Step 3: Locate link
- Step 4: Click link
- Step 5: Achieve goal: arrive at photos and videos page
- Step 6: Return with goal accomplished

Method 2: Navigate to Photos page
- Step 1: Recall information needed to complete task
- Step 2: Locate link
- Step 3: Click link
- Step 4: Achieve goal: arrive at photos page
- Step 5: Return with goal accomplished

Method 3: Navigate to “Nationals 2007” photo page
- Step 1: Recall information needed to complete task
- Step 2: Locate link
- Step 3: Click link
- Step 4: Achieve goal: arrive at Nationals 2007 photos page
- Step 5: Return with goal accomplished

Method 4: Open picture titled “2007 Nationals Team”
- Step 1: Recall information needed to complete task (picture title)
- Step 2: Locate picture/link
- Step 3: Click link
- Step 4: Achieve goal: “2007 Nationals Team” picture opened
- Step 5: Return with goal accomplished
Appendix C

Current Site: Instructions

Task 1 - Getting to Homepage (http://www.psuclubcheerleading.com/home.htm)

Enter www.psuclubcheerleading.com into web browser
Click on Image

Task 2- Open Full Size Image of Picture Titled "2007 Nationals Team"

Click Photos and Videos link
Click Photos link
Click Nationals 2007 link
Click image of 2007 Nationals Team

Prototype Site: Instructions

Task 1 - Getting to Homepage (http://www.psuclubcheerleading.com/home.htm)

Enter www.psuclubcheerleading.com into web browser

Task 2 - Open Full Size Image of Picture Titled "2007 Nationals team"

Click Photos link
Click Nationals 2007 link
Appendix D

KLM Analysis: Prototype

KLM Task 1 - Getting to Homepage (http://www.psuclubcheerleading.com/home.htm)

1. Find URL Bar M

2. Point to URL bar (Use mouse) link H[mouse], HP

3. Highlight URL (triple click of mouse) KKK

4. Type in URL Provided 27K

5. Hit Enter K

Total: 1M + 2H + 30K + 1P

\[1(1.35) + 2(0.4) + 31(0.2) + 1(1.1) = 9.09s\]
KLM Task 2- Open Full Size Image of Picture Titled "2007 Nationals team"

1. Locate "Photos" link M

2. Point to "Photos" link [mouse] H, HP

3. Click link K

4. Locate "National 2007 Team" picture link M

5. Point to "National 2007 Team” picture link HP

6. Click "National 2007 Team" picture link K

Total: \[2M + 3H + 2K + 2P\]
\[2(1.35) + 3(0.4) + 2(0.2) + 2(1.1) = 10.1s\]
Appendix E

GOMS Analysis: Prototype

GOMs Task 1 - Getting to Homepage (http://www.psuclubcheerleading.com/home.htm)

Goal: arrive at www.pennstateclubcheerleading.com/home.htm
Method 1: Arrive at Homepage
Step 1: Read task from given sheet
Step 2: Recall information needed to complete task (URL)
Step 3: Enter URL in text field as instructed
Step 4: Achieve goal: Arrive at title page
Step 5: Return with goal accomplished

GOMs Task 2 - Open Full Size Image of Picture Titled "2007 Nationals team"

Goal: open picture titled “2007 Nationals Team” (http://psuclubcheerleading.com/camoshirts.jpg)
Method 1: Navigate to Photos page
 Step1: Read task from given sheet
 Step 2: Recall information needed to complete task (look for Photos)
 Step 3: Locate link
 Step 4: Click link
 Step 5: Achieve goal: arrive at photos and videos page
 Step 6: Return with goal accomplished
Method 2: Open picture titled “2007 Nationals Team”
 Step 1: Recall information needed to complete task (picture title)
 Step 2: Locate picture/link
 Step 3: Click link
 Step 4: Achieve goal: “2007 Nationals Team” picture opened
 Step 5: Return with goal accomplished
Appendix F

Current Site

Task 1 - Getting to Homepage (http://www.psuclubcheerleading.com/home.htm)

Title Page: Click Image

Homepage: Task Complete
Task 2 - Open Full Size Image of Picture Titled "2007 Nationals team"

Homepage: Click Photos and Videos Link

Click on Photos Link

Click on Nationals 2007 Link
Click on National Team Image

National Team Photo: Task Complete
Prototype

Task 1 - Getting to Homepage (http://www.psuclubcheerleading.com/home.htm)

Enter Address: Arrive at Homepage, Task Complete
Task 2 - Open Full Size Image of Picture Titled "2007 Nationals team"

Homepage: Click on Photos Link

Click on National Team 2007 Image
9. References

