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Abstract

Where shall we start to study order effects in learning? A natural place is to observe
learners. We present here a review of the types of data collection and analysis
methodologies that have been used to study order effects in learning. The most
detailed measurements, such as simple reaction times for completing a task, were
developed and are typically used in experimental psychology. They can also form the
basis for higher level measurements, such as scores in games. Sequential data, while
less used, are important because they retain the sequential nature of observations, and
order effects are based on sequences. These records can include eye movements,
subjects’ spoken-aloud thoughts as they solve problems (verbal protocols), and
records of task actions. In areas where experimental data cannot always be obtained,
other observational techniques are employed such as surveys. Once gathered, these
data can be compared with or "cooked down" into theories, which can be grouped
into two types: (a) Static descriptions that describe the data without being able to
reproduce the behavior, examples includes simple behavior grammars and Markov
model. (b) Process models that perform the task that subjects do and thus make
predictions of their actions. These process models are typically implemented as a
computational system. They provide a more powerful, dynamic description, but one

that is inherently more difficult to use.
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4.1 INTRODUCTION

Where shall we start to study order effects in learning? A natural place is with data. We
review in this chapter several of the types of data for studying order effects in learning, and a
selection of existing, well-established methodologies for collecting and studying such data.
Some of these methodologies themselves are often underused, however, so this chapter may
encourage the use of these deserving (but often expensive in time or equipment) data
collection and analysis methodologies. We present approaches from psychology, education,

and machine learning, which—as we believe—can be fruitfully applied in other disciplines.

We are interested in data that can show that order effects occur and give us insight into how
they occur. In addition, of course, we would also like the data to be robust, that is, the data
should be reproducible and reliable. This will sometimes imply special techniques for data

gathering.

We will see several themes and issues in exploring the types of data that can be used. First,
there is a need to keep the sequential nature of the data intact to study sequential phenomena.
Second, there is a trade-off between the detail of the data and the amount of data that can be
gathered and analyzed with a given amount of resources. For example, you can see that
chapters here that gather a lot of data per subject and do very detailed analyses use fewer
subjects than studies that gather less data per subject or perform more automatic analyses.
Third, we will present several data types and a discussion of corresponding, appropriate
analysis techniques. Fourth, we turn to the issue of different experimental designs for
studying order effects. The end of the chapter discusses how your data can be embedded

within broader theories of human learning and problem solving.

4.1.1 Retaining the sequential nature of the data

It is not strictly necessary to keep the sequential order of the data to study order effects
themselves. Order effects can often be found simply by looking at how subjects perform
after receiving stimuli in two different orders. It is necessary to keep the sequential aspects of
the data in mind to be able to observe where and when these order effects appear (they might
be practically very important as well!). In addition, and theoretically more important,
understanding how the order effects occur, is greatly assisted by having intermediate

measures of performance that retain the sequential nature of behavior.

Figure 1 gives an illustration of one of several possible order effects. It shows how
performance (typically an inverse of response time) might vary with two different learning
orders. If you measure after two units, there is not an order effect because the stimuli are not

equivalent. If you measure after three or four units of time, there is an order effect. At five
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units of time, there is not an order effect for E, but there remain the difference performance
effects on the intermediate stimuli (D is most prominent), and there are likely to be residual

effects in many learning systems.
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Figure 1. Order effects are visible after measuring after ABC vs. BCA and after
ABCD vs. BCAD, but there is no effect after ABCDE vs. BCADE.

Retaining the sequential nature of data is not dependent upon what kind of data are gathered,
although most types of data have traditionally either discarded the sequential information
(e.g., reaction times), or traditionally retained the sequential order of the data (e.g., verbal
protocols). In the case presented in Figure 1, the data needs to be retained for the units as
well as their order. To be sure, you always can collect sequences of elementary data, such as
sequences of reaction times, of test scores, of verbal utterances, and so on, and keep them as

sequences. We will present examples of those data sequences later.

Recently there have been steps to extend the use of sequential data. Exploratory Sequential
Data Analysis (ESDA) in human-computer interaction studies (Sanderson & Fisher, 1994),
and in the social sciences in general (Clarke & Crossland, 1985) allows you to see

intermediate order effects.

4.1.2 Data granularity

Of course, choosing the appropriate level of data to examine is crucial. If you use detailed
enough data, you can often see a large amount of intermediate order effects, as you see
learners on different paths come to the same performance (see again Figure 1). VanlLehn’s
results (this book) suggest this is possible. Finer grained data will also provide more insight

into the learning mechanisms.

There are trade-offs, however. More data often means that data collection will get more

cumbersome and that the analysis becomes more complicated. In addition, as we know from
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the statistical theory of mental test scores (Lord & Novick, 1968), single observations are less
reliable than an aggregation over a set of similar observations. Thus, using aggregated data
by collapsing blocks of multiple observations over time increases the statistical power of your
research at the cost of ignoring potential interesting interactions within the collapsed blocks
such as order effects. It was often said by Newell and Simon (personal communication) that
the most interesting trials were the practice trials before starting the experiment proper,

because these were where subjects' learned.

4.2 TYPES OF DATA AND THEIR GATHERING AND ANALYSIS

We will examine several types of data in detail. This is not to say that there are not other
types, just that these are either the most natural or are particularly good examples. This will
include simple quantitative measurements, qualitative measures, measures from students, and

data from models and automatic learners.

4.2.1 Simple quantitative measures

Measures such as time to complete a task (response times) and quality of performance
(percent correct) are not the most exciting way to study order effects, but they are a good
place to start because they are simple and clear. When they are taken at the end of two
stimuli orders they can provide the first indication that order effects are occurring in learning.
Learning curves, such as shown in Figure 1, are often generated from repeated assessing of
those simple performance measures. Reaction times are also among the most traditional
ways of studying behavior. Especially in applied research, time to perform a task can be

crucial because it represents money or consumes other resources.

Part-task training is a domain where time to learn and performance are the measures typically
examined. Here, complex tasks are decomposed into smaller units that can be efficiently
trained in isolation. The goal, then, is to find a decomposition and an optimal training
sequence for those smaller units that minimize the cost of learning the total task (see e.g.,
Donchin, 1989 for a relatively complex task; and Pavlik, this volume, for a relatively simple

task example that examines only training order, not decomposition).

Other often used simple measures include counting of correct and incorrect responses. Many

of the chapters here start with these measures. In general, these simple quantitative measure

' We have followed Roediger's (2004) use of “subjects” to refer to subjects because

experimenters are also participants.
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can be a useful indicator and summary of order effects that you will often wish to see, but

they will not tell you much about how and why the effects occurred.

4.2.2 Derived measures

Simple measures can be combined to create more complex measures. A good example of a
derived measure is velocity (as it is derived from distance and time). Examples in behavior
would include sums, differences, and ratios of reaction times or such manipulations of other
kinds of indirect measures. We can note several interesting kinds of derived measures to

keep in mind, which we explain next.

Hybrid measures

Combining several measures (e.g., scoring 5 points for each second to complete a task and 10
points per widget) are often used to create scores provided to people learning a procedural
task. The highly motivating learning experiences called video games, for example, often use
them. A problem with these measures is that they are ad hoc, and thus they often fail to meet
the assumptions necessary for inferential statistical tests (for an account when and how
several measures can be combined meaningfully see Krantz, Luce, Suppes & Tversky, 1971;
or other good statistics books). These scores are nevertheless common practice in the
classroom, for example, many tests give points for knowing different types of knowledge.
From an applied point of view, they may be initially useful as a summary of performance.
For further theoretical analysis, however, you will need to keep the components separate and

check for possible interaction between the parts before you build summary scores.

Change as a measurement

In order to change the impact of learning on performance, it is sometimes useful to compute
differences in performance. This can be differences in time to successfully complete a task
(has learning changed the speed of performance?), differences in error rates, or differences in
other quantitative measures you are using. Turn taking is another derived measure, for a turn
is defined in relation to another action. But be always aware of problems in inferential

statistics using differences as a dependent variable!

Other interesting change measures include interaction patterns. These can be represented
with a variety of grammars (e.g., Olson, Herbsleb, & Rueter, 1994), and can be analyzed to

find precursors for behaviors using lag sequential analyses (e.g., Gottman & Roy, 1990)
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4.2.3. Applying codes to measures: Qualitative Measures

In order to study the impact of learning, sometimes it is useful to study how performance
changes qualitatively, such as strategy shifts. This can be done by building meaningful
categories and coding the subject's behavior. These codes (categories) can then be analyzed
as other data.

An example of this type of study is research dealing with the level of aspiration in a series of
tasks with varying difficulty. In a study by Salonen and Louhenkilpi (1989) students solved
anagram tasks in an experimental situation where they had to select a series of tasks from five
levels of difficulty. Students had restricted time for each task, and they had to select and
solve several tasks. In the middle of the series students were given superficially similar but
impossible tasks. The effect of induced failures was different for students with different
motivational tendencies. Some students slightly lowered their aspiration level after the
failures but raised it again after the later success. Other students responded to failures by
decreasing their aspiration level and kept selecting the easiest tasks independently of
occasional success during later trials. Students’ selections were videotaped and they were
interviewed after each selection. This qualitative data were combined with the quantitative
data of selecting sequences and successes. (This data and analysis approach is similar to
work reported in VanLehn’s chapter.)

In another study (Lehtinen, Olkinuora & Salonen 1986) students solved problems of addition
and subtraction of fractions. In this study there were also impossible tasks in the middle of
the series. Qualitative differences of the problem solving processes before and after induced
failures were observed. Some students solved the problems without showing any effect of
the induced failures, whereas other students became worse in their problem solving processes
after the induced failures. This might suggest possible mechanisms for order effects in
learning (in this case, emotional responses, also see Belavkin & Ritter, 2004), and highlights

the effect of order on motivation and the role of motivation in learning.

4.2.4 Protocols and theoretical frameworks

All measurements are taken within a theoretical framework, even if one might not be aware
of it. Some measurements, however, are taken within a larger and more explicit framework
than others. Protocol data, sequences of behavior, typically provide a rich account of all kind
of behavioral observations. Protocols are an important area of measurement that can be used

to study learning that often need to have their measurement theory made more explicit.

Protocols allow us to look at the time course of learning and are usually able to provide
additional information on processing and learning, which many types of data do not address.

Many types of protocols are related to an explicit theoretical framework and form an
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important method for studying learning processes. Examples of protocol data include
sequential recording of verbal utterances during problem solving (e.g., VanLehn this
volume), mouse and keyboard events whilst working with a computer (e.g., Pavlik, this
volume,; Swaak & De Jong this volume; Scheiter & Gerjets, this volume), or eye movements
during reading. To find regularities within such vast records you need a theoretical

framework to provide guidance.

Each type of protocol data comes with a theoretical framework of how and why they can be
used. Verbal protocols—often called talk-aloud-protocols—are perhaps the best known.
Verbal protocols are taken within a strong framework (Ericsson & Simon, 1993). They make
several explicit assumptions about how subjects can access working memory, and how they
can report through "talking aloud." Verbal protocols can provide cues about what
information subjects are using, and point to strategies that were employed by subjects. Eye
movements have been studied as well (from early work summarized by Monty & Senders,
1976, Rayner, 1989, to more recent work such as Byrne, 2001, Anderson, Bothell, &
Douglass, 2004, and Hornof & Halverson, 2003), and help us understand how order effects
occur by suggesting what information subjects have paid attention and in what order. These
protocols can include mouse movements where they are different than task actions, but these,
too, require a theory to support a less direct measurement theory (Baccino & Kennedy, 1995;
Ritter & Larkin, 1994).

In educational psychology the units of analyses have typically been larger than in
experimental cognitive psychology, and thus the data acquisition methods are somewhat
different. They can include stimulated recall interviews where students, for example, watch a
videotape of the sequence of their own activities and try to explain the meaning and intention
of different acts (Jarveld, 1996). (This is a type of retrospective verbal protocol, Ericsson &
Simon, 1993).

So far, gathering and analyzing all types of protocols have been difficult enough that they
have not been used as often as one might like. However, the theories supporting the use of
protocols are robust and protocols can detail the micro structure of how order effects could

occur and often provide insight into the mechanisms that give rise to order effects.

4.2.5 Machine learning data

The behavior of machine learning algorithms, for example, as noted by Cornuéjols (this
volume), can be examined in pretty much the same way as human subjects (Cohen, 1995;
Kibler & Langley, 1988). Very often the same measures can be taken. Machine learning
algorithms, however, are nearly always easier to study than human subjects because the

learning algorithms are typically faster to run than subjects, and they do not have to be
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recruited to do the task. You can easily control for confounding variables and you do not
have to be concerned with factors related to the social psychology of the experiment (such as
demand characteristics or experimenter expectancy effects). In addition, it is easy to reset the
learning algorithm and run it over a new input stimuli set or with changes to the model’s
parameters (representing different subjects or subject populations). The analyst can also take
additional measurements of the internal state of the learner directly, and directly observe the
mechanisms that generated it. When doing this, it is important to save the machine learning
data and to note the conditions under which it was gathered. We include some guidelines as

an appendix to this chapter.

There appear to be two outstanding limitations, however, to studying machine learning
algorithms. The first problem is that they cannot provide abstractions or reflections about
their behavior in a general way. While introspection is not a reliable data gathering
technique, subjects’ insights can be nevertheless helpful. It would be useful to have
descriptions and summaries of the model's mental state, particularly when this is complex or
time-based and changing. The second problem is that machine learning tends to be simple,
done with a single type of data, a single knowledge base, a single learning algorithm, and a
single and permanent learning goal (i.e., the machine is always and directly motivated).
Although there are exceptions to each of these, in general these shortcomings often limit the

application back to human learning and represent areas for further work for machine learning.

4.3 TYPES OF EXPERIMENTAL DESIGNS

We can outline several experimental designs for studying order effects. Note, however, that
experimental designs are usually concerned with eliminating order effects by averaging over
different sequences. More information on experimental design can be found in standard
textbooks (e.g., Calfee, 1985; Campbell & Stanley, 1963).

4.3.1 Same tasks presented in different orders

The simplest design to study order effects is just to present the same task in different orders
to different groups (between-groups design). Where this is possible, using simple direct
measures of performance can detect whether different orders have an effect. With richer
performance measures, such as verbal protocols, one might start to address how these
different orders give rise to different behavior. Presenting the different orders to the same
group (within-group design) is generally not applicable in learning studies, simply because
subjects have learned after the first order!

It is also worth noting a direct and powerful trade-off: The more data you collect for a single

subject, either by number of trials or by type of trials or by density of the data, the less
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subjects that can be run for a given project size. With increased density or complexity of data
more interesting questions can be answered. But the work then relies more on previous work
(theories) to define how the initial results are to be interpreted, such as protocol theory, and
the data gathering has more constraints on it. Furthermore, the analyses become more

complex and difficult to perform.

An example from survey research helps illustrate the simplest form of a between-subject
design for studying order effects. The example is concerned with a simple type of learning.
Imagine a questionnaire with two items for assessing life happiness. Respondents have to
indicate their happiness with life in general either before or after they have reported how
happy they are with a specific domain of their life, namely dating. The dependent variable of
interest is how dating accounts for general life happiness, which is indicated by the
correlation between dating happiness and general happiness. The correlations will differ in
the two conditions, with the correlation being higher when dating happiness is assessed after
general happiness. The usual explanation for this order effect is that subjects interpret
general life happiness as life happiness beside dating happiness when they where asked for

dating happiness before (for a richer discussion of those issues see Strack, 1992).

Another example of order which is more closely related to learning is Asch's (1946) classical
finding about impression formation in personal perception. Asch showed that a person will
be viewed as more likeable when described as “intelligent-industrious-impulsive-critical-
stubborn-envious” than when described by the same (!) list of traits presented in the opposite
order. In Asch’s view, this primacy effect occurs because some of the traits gain a positive
meaning when preceded by a positive trait such as intelligent but gain a negative meaning
when preceded by a negative trait such as envious. The trait adjectives thus seem to be
differently colored in meaning depending on their context. This kind of experiment again

uses a simple between-subjects design.

As another example of learning effects, consider industrial training programs that differ only
in the order of presenting the material where subjects in different groups end up with
different performance. Langley (1995) notes that sometimes the effects of two orders may
converge with time (see the ‘canceling out effect’ in Figure 1, where further learning
eventually cancels out the order effect seen in the first four stimuli). But keep in mind that
the worse trained group will meanwhile be unnecessarily less productive until it catches up.

This often matters!

4.3.2 Teaching sequences in educational psychology

In education psychology it is seldom possible (or meaningful) to carry out experiments where
exactly the same information can be presented in different orders. Often in these experiments
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the order and content cannot be completely independent variables, but order already results in
some changes in the content. An example of this kind of design are the studies on effects of
so called advanced organizers in learning texts (Griffin & Tulbert, 1995). Advanced
organizers in the beginning of the text do not bring any additional information to the text but
activate some prior knowledge and learning aims before reading. Exactly the same text or
picture could be presented, for example, in the end of the text but this is not often the case in

studies of the effects of advanced organizers.

On a more general level, sequence effects have been studied in comparison of different
instructional approaches like discipline-based vs. problem-based methods in medical
education (e.g., Schmidt, Machiels-Bongaerts, Cate, Venekamp, & Boshuizen, 1996). In
principle, the same content can be taught but in very different orders. Discipline-based
models start with the teaching of the theoretical basis of different medical disciplines. This
knowledge will later be used in solving case problems, whereas the problem-based models
start with authentic problems and the students have to study the basic science knowledge
when solving these problems. From a methodological point of view, however, these two
approaches almost never can be examined as a pure sequence effect because of the real-world

limitations of presenting exactly the same material.

4.3.3 Observational methods for interacting with computers

In educational psychology many order sensitive experimental designs have been used where
the learning sequence is not an independent variable but the dependent variable. Hypertext
and instrumented readers (now called browsers) make it possible to follow students’ personal
reading sequences and problem solving strategies and then to compare the strategies with the
learning results. Britt, Rouet, and Perfetti (1996) used hypertext documents and instrumented
browsers as a method to present educational material. The format and the browser made it
possible to record the students’ reading sequences, which could then be analyzed with respect
to learning and performance (see Scheiter & Gerjets, and Swaak & de Jong, this volume, for

examples of this approach).

Another approach to work in this area when you have access to the user’s computer is to use
a keystroke logger such as RUI (Recording User Input, Kukreja, Stevenson, & Ritter, in
press). Keystroke loggers record the user’s keystrokes for later analysis and some, such as
RUI, allow playback. This allows any piece of software to be studied. There are also
commercial versions available that work with video data as well. Work under the topic of

usability studies have further tools and methodological notes in this area.
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4.3.4 Repeated surveys

There are areas where true experiments are not possible, where the situation cannot be
independently manipulated. Repeated measurements through surveys and finding carefully
matched cases can be used to measure longer term and more complex order effects in
complex social behavior and education. For example, developmental psychologists have to
note the order of development of skills; they can only survey the skill progression, not
manipulate it. If they want to study the effects of the order of skill acquisition, they must
observe many different, naturally occurring orders. The same elements will not always
appear in each learning sequence (do all children hear the same words from their parents?),
but we suspect that for many purposes they can be treated as equivalent on a more abstract
level. Typically, the measurements brought forward to theoretical analysis are not the items
themselves (such as performance on individual math problems), but higher level derived

measures (such as a score on a standardized exam).

Surveys can also be done in the midst of another design. Subjects can be queried in the midst
of performing a task with questions or requests or self-reports designed to measure their
internal state in some way, for example, their motivational state (e.g., Feurzeig & Ritter,
1988). Scheiter and Gerjets (this volume) do this to study how students reorder problems on

exams.

4.4 TYPES OF ANALYSES —STEPS TOWARDS THEORIES

How can those data on order effects be summarized? There are numerous examples of
summary analyses in the other chapters, such as process models in psychology and machine
learning algorithms in computer science. What we will address here are some of the
preliminary analyses that need to be performed to understand the data prior to creating such
models. These analyses can be used to summarize knowledge of order effects and to predict
order effects.

4.4.1 Simple data descriptions

The first step in nearly any set of analyses is to create a set of simple descriptive statistics of
the data, such as the response time for each task in each order and the number of errors per
condition. Itis often very useful to visualize the data in the form of a graph or a plot. This is
part of a fairly large and well defined area of exploratory data analysis, for example, Tukey
(1977) and Tufte (1990), which applies to sequential data as well. Sanderson and Fisher
(1994) provide an overview of exploratory sequential data analysis (ESDA). Papers in their
special issue on ESDA provide several examples (Frohlich, Drew, & Monk, 1994; Olson,
Herbsleb, & Rueter, 1994; Ritter & Larkin, 1994; Vortac, Edwards, & Manning, 1994).
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Simple descriptive statistical analyses are not always applicable when sequential data have
been gathered. Keeping the sequential nature of the data precludes many averaging analyses,
so creating graphic displays becomes more important. The user can try to create transition
networks as behavioral summaries, such as Markov models, which show the frequency and
types of transitions (Rauterberg, 1993; also see Sun & Giles, 1998 for more sequence
learning models). More complex transition diagrams may include other features of the data
such as the frequency of each category (Olson, Herbsleb, & Rueter, 1994).

Applying inferential statistics in this area can be a bit tricky. Often the assumptions of such
analyses are violated by sequential data, such as independence. The best way to proceed is
often to come up with a theory, and then simply work to improve it, not prove it (Grant,
1962).

4.4.2 Microgenetic analyses of verbal and other protocols

An extreme version of data analysis is to keep the sequential nature of the data completely
intact, not using averages, but analyzing the data as a sequence of individual points. If simple
reaction times are used as the data points, learning curves are generated because learning

nearly always occurs (Ritter & Schooler, 2001).

Richer, non-numeric data are often kept as sequential data. Here, a sequential analysis of the
data can extract more information and provide more direct information on how behavior is
generated than reaction time means. This type of analysis includes protocol analysis
(Ericsson & Simon, 1993; Newell & Simon, 1972) and microgenetic analysis (Agre &
Shrager, 1990; Siegler, 1987; VanLehn, this volume). These analyses typically print or plot
the data in series. The analyst then examines the data by hand looking for higher order
patterns, such as strategies and strategy changes. This is a tedious form of analysis, but it
often provides the most insight into behavior and its causes. The initial analyses are tied to
data rather closely here, with the final analysis often designed to help create or test formal

information-processing models.

4.4.3 Information processing process models

The analysis of order effects should lead to information processing theories that can make
predictions about where, when, and how order effects will occur. These theories typically
perform the task of interest, providing a description of the knowledge and mechanisms
sufficient to perform a task. They typically will provide descriptions of intermediate internal
states, the time course of processing, and near alternative actions. They do this in a very
inspectable and objective way. This provides a much richer theory to test than a verbal

theory.
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These information processing models have been created in at least two traditions, machine
learning, which emphasizes doing the task well, and cognitive modeling, which emphasizes
doing the task like humans do the task. Summaries of theories are described in the other
chapters on machine learning (Corneujols) and process models (Nerb et al.; Lane), and are
used in many of the chapters (e.g., Gobet & Lane; Pavlik; Ohlsson). We will briefly preview

them here and describe how they can influence data collection.

Process models make many predictions and many types of predictions. Nearly any type of
data gathered can be compared with their performance. It is thus very easy to see where
these types of theories are not matched by the data. Many people believe that this makes
them bad theories. We believe that this viewpoint could not be more incorrect. If you are
trying to create a theory that will predict behavior, you need to create a theory that makes
strong predictions about behavior, which these theories do. Being able to see where the
theory is not matched by the data allows you to improve or reject the theory. Theories that
cannot be seen to be wrong, cannot be improved and, even worse, cannot be falsified. And,
let us be fair, theories that do not make predictions are even more wrong for not making
them. A more complete view of this theory development view is available from Grant
(1962). Creating the model first thus points out what kinds of data to gather to validate and
improve the model (Kieras, Wood, & Meyer, 1997).

4.5 CONCLUSIONS AND OPEN QUESTIONS

Because we cannot prove a theory, what is the role of data and what way forward do we have
for organizing our understanding of order effects as theories? We believe that there are two,
complementary ways. The first is simply to test your theories to show that they are worth
taking seriously, and to find out where they are incomplete and could be improved (Grant,
1962). This approach does not end (how could it?), but is repeated until the theory is
sufficient. The theory will remain incomplete and wrong in some way, for example, it will

always be able to take account of further phenomena.

Project 1: Take your favorite task and design an experiment to study order
effects. Can you augment the design of an existing experiment to look at order
effects? Which experimental design would you use? What measurements would you
take? What would taking different types of data mean? How would you analyze
them? Would what you learn be worth the effort? If you are taking sequential

measurements, how will you deal with the complexity? (See web sites for software

and software reviews in this area of sequential data analyses.)
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A second way forward is to start to create more broad theories. Here, the breadth of the
theory counts as well as its depth. This approach, first argued for by Newell (1990), is for
unified theories of cognition (UTCs). These theories are intended to include emotions,
perception, and social interaction, so they might be better labeled unified theories of
behavior. Practically, UTCs are currently studies on how to integrate theories, how to use a
cognitive architecture, and on a host of practical problems. This approach is taken up in
more detail in the introductory chapters that discuss models and the chapters on models in the

second section of the book.

Project 2: How can we choose appropriate data to test our theories? Find a task
in psychology, machine learning, education, or your own field. What are the typical
measurements? What would be an unconventional measurement to take in your field

that is routinely used in one of the other fields?

If there are theories or software to do so easily, run a pilot study creating and using
this new technique for your area. An example of this would be to modify a machine
learning algorithm or cognitive model (instead of a subject, typically) to “talk aloud”
while it solves a task (this has only been done twice to our knowledge, Johnson, 1994,
and Ohlsson, 1980).

Project 3: Can unified theories be correct? Does psychology need a uniform
theory, or are first year undergraduates correct in saying that human behavior is too

complex to understand let alone predict? What are some of the arguments for and

against UTCs based on the data that is available? Prepare a 10 min. presentation.
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APPENDIX: GUIDELINES FOR RUNNING MODELS AS SUBJECTS

Running models as subjects deserves some attention because it seems that everyone knows
how to do it, but when it comes time to reexamine the model runs or reanalyze the results,
problems appear. Here, we attempt to provide some guidance on how to run a model like a
subject. The details will, of course, vary based on the size of the model and on the number of
runs. For example, if the model simulates 90 hours of data, you might keep less than the full
record of its behavior. If you are running the model 10,000 times, you might also not keep a
full record of every run. Otherwise, it appears to us that model traces need to be treated as

good as or better than empirical data.

There can be many intentions for running a model. One important reason is to understand
your model, and another might be to illustrate how the model works so that you can explain
how the mechanisms give rise to behavior (VanLehn, Brown, & Greeno, 1984). Another
major intention of running a model is to generate predictions of behavior for comparison with
data for validation and model development. And finally, an important reason is predicting
human behavior. In this case you probably have run the model for comparison with human
data to validate the model. At this point you may or may not want or need to compare it with

human data.

In all of these cases, the predictions of the model should be clear. If your model is

deterministic, then you only have to run your model once for a Soar model that learns. Some
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Soar models are this way. If your model has stochastic (random) elements, you either need to
compute what its expected value is using iterative equations (which we have only succeeded
in doing once, Ritter, 1988), or you need to sample the model’s behavior enough times that

the model’s predictions are clear.

Ideally, you would like a point prediction and a prediction of variance for each measure. Too
often predictions are a sampled prediction, that is, the model’s prediction is only an estimate

of the model’s final prediction because the model has not been run enough times.

Computing these predictions means running the model and saving its results. We can provide

some suggestions for how to do this.
Suggestions

1. Save a copy of the model. “Freeze” it, so that at a later time the model, its cognitive
architecture (if applicable), and any task apparatus that the model uses can be run or at least
examined. This is similar to taking down study details like the experimental methods section
of a paper for the model. Put this frozen copy in a separate directory from the model you are

developing.

2. The model code should be documented to be at least as clear as good programs are.
Dismal (www.gnu.org/software/dismal) provides an example that we can point to. Thus,
model code should have an author, a date, preamble, required libraries and base systems,
table of contents of the model, variables, and be presented as major sections. A README
file should tell someone from another location how to load and run the model. This approach

is based on a theory of how to write more readable code (Oman & Cook, 1990).

3. Record a trace of the model in enough detail that later analyses are possible. This is like
recording individual differences and assigning a subject ID. It will thus be possible to run the
model later, perhaps, if you need additional data. But if you are using a batch of runs, or the
model takes a while to run, it will be very useful to have the longer trace available. If even
larger traces are available, it is good insurance to record a few of these. These traces will
also be helpful if at a later time you find something interesting in the model’s behavior, or if
you later want to report another aspect of the model’s behavior. If you are running the model
to represent different subject conditions, these traces should be separately recorded, labeled,

and stored clearly.

4. Each run of the model, the trace and any summary measures, should be stored like subject

data. That is, one run per file if possible, and not modified later.
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5. The number of times to run a model is an interesting question. In nearly all cases, models
are theories and as such their predictions should be and can be made very clear. Nearly all
science theory we know of does not talk about sampling the theory, which is assumed to be
fixed, but sampling data from the world. Thus, ideally the model should be run until its

predictions are clear.

If your model is deterministic, running once is enough. If it has random components and is
not deterministic, once is not enough. Increasing the number of model runs is nearly always
much less expensive than increasing subjects. It is clear to us (Ritter, Klein, & Quigley,
2005) that there are several heuristics currently being used about how many times (e.g., “10”
and “the number of subjects”) that are not appropriate. Examining a limited number of
subjects arises because of resource limitations; also they are data, and need to be treated

differently. Model runs typically are not as limited.

A way to compute how many runs to perform is both necessary and possible. Looking at
power and sample sizes have suggested to us that 100 runs will often provide fairly clear
power for examining predictions for Cohen’s medium (0.2) effect sizes. Power calculations
will let you compute how many runs for a given effect size you would like to examine at a
given confidence level of finding a difference. A 100 runs is currently more than most
models are run. Power calculations suggest that 10,000 runs should nearly always be more
than sufficient, but this can be problematic when the model takes a relatively long time to

run.
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