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Abstract

Measures of entropy are useful for explaining the be-
haviour of cognitive models. We demonstrate that
entropy can not only help to analyse the perfor-
mance of the model, but also it can be used to con-
trol model parameters and improve the match be-
tween the model and data. We present a cognitive
model that uses local computations of entropy to
moderate its own behaviour and matches the data
fairly well.

Introduction
Information theory can be applied to cognitive mod-
els and help to analyse the performance of both the
models and subjects they simulate. Both informa-
tion theory and cognitive science are concerned with
the question of information change either in a form
of transfer or acquisition. Learning is an important
cognitive process that allows making correct deci-
sions and improves performance. From information
theory point of view learning can be seen as a re-
duction of uncertainty. Thus, the amount to which
the uncertainty is reduced can be an indicator of the
speed of learning.
Cognitive models are sufficiently transparent al-

lowing a researcher to examine all aspects of their
internal state at any moment (although in practise it
may not always be a trivial task). This extends the
number of observables beyond the traditional ones
(i.e. errors, reaction times, strategy choice). These
additional observables can be probabilities of rules,
activations of knowledge units, synaptic weights and
so on. Although a good model (good in terms of cor-
relation with data) cannot be considered literally as
the representation of processes in the brain, careful
analysis of the dynamics of internal variables of the
model helps to explain why we observe what we ob-
serve externally in the behaviour of the model and,
perhaps, in subjects.
In this paper the notion of entropy will be ap-

plied to describe a state of a cognitive model. It will
be shown in the first section how to calculate the
entropy using internal parameters provided by cog-
nitive architectures, such as the conflict resolution
parameters in Act–r (Anderson & Lebiere, 1998).
In the second section we shall illustrate the use of

entropy in a particularAct–rmodel and discuss the
dynamics of entropy during the model run. In par-
ticular, it will be shown that although the entropy
decreases on average, it may suddenly increase at
certain stages of problem solving, such as when the
model learns new production rules or when the num-
ber of errors increases due to environment changes.
In the third section we shall discuss how the

amount of information gain determined by the
changes of entropy may help to analyse the impact
of parameter settings on learning. For example, it
will be shown that an increase of noise variance in
the Act–r conflict resolution accelerates informa-
tion gain. Thus, noise increase may help a prob-
lem solver at certain stages of task exploration (e.g.
when the environment changes or at the beginning of
problem exploration). Finally, we shall discuss the
idea of dynamic parameters control in the model us-
ing entropy. We present a model with noise variance
controlled dynamically by the entropy that achieves
a better match with the data than a model with
static settings.

Uncertainty of Success
The entropy H of a system with random states ξ is
defined as

H{ξ} = −E{lnP (ξ)} = −
∑

ξ

P (ξ) lnP (ξ) , (1)

where E{·} denotes expected value, and P (ξ) is the
probability of state ξ. It is quite difficult to estimate
the entropy of a large system with many state (e.g.
a cognitive model). However, we may consider the
problem from a different perspective. Let us con-
sider a problem solver with a goal and a set of deci-
sions, and let ξ ∈ {0, 1} be a set of two states with
respect to achieving the goal: failure (ξ = 0) and
success (ξ = 1). Now the uncertainty that the prob-
lem solver will achieve the success or failure state
is:

H01 = − [P (0) lnP (0) + P (1) lnP (1)] , (2)

where P (1) and P (0) are probabilities of success and
failure respectively. Note that P (0) = 1−P (1). We
shall call H01 the entropy of success.



Suppose that the success of a problem solver de-
pends on decisions it makes. Thus, the probability
of success can be written as

P (1) =
∑

i

P (1, i) =
∑

i

P (1 | i)P (i) ,

where P (1, i) is the joint probability of event 1 and
ith decision, P (1 | i) is the conditional probability
of 1 given that ith decision has been made, and P (i)
is the probability of ith decision.
In order to calculate the entropy H01 one should

establish ways of estimating probabilities P (1 | i)
and P (i), and these ways may depend on specific
architectural implementation. Consider as an exam-
ple the Act–r cognitive architecture (Anderson &
Lebiere, 1998). In this case the decisions are appli-
cations of production rules of the model.

Act–r records the history of successes and fail-
ures of each rule and uses this information to es-
timate empirically the expected probabilities Pi of
success for each production rule:

Pi =
Successesi

Successesi + Failuresi
. (3)

These probabilities are empirical estimations of con-
ditional probabilities P (1 | i), and given that tests of
rules are independent Pi, asymptotically converges
to P (1 | i). Thus, we may use Act–r expected
probabilities to calculate P (1):

P (1) ≈
∑

i

Pi P (i) .

Probability P (i) that rule i fires is determined in
Act–r by several subsymbolic mechanisms. The
most important here is the conflict resolution (a pro-
cess of selecting one rule out of several matching the
current goal state). In Act–r each production rule
has a utility Ui attached to it (also sometimes called
expected gain). In order to resolve the conflict, Act–
r selects the rule with the highest utility. The utility
of rule i is defined as:

Ui = PiG − Ci + ξ(s) . (4)

Here Pi is the expected probability of success (eq. 3),
G is the goal value (usually measured in time units),
Ci is the expected cost representing the average ef-
fort required to achieve the goal if rule i fires (it too
may be learned empirically). ξ(s) is the expected
gain noise, a random value added to utility of each
rule, taken from a normal distribution with the mean
value of zero and variance determined by the s pa-
rameter: σ2 = π2s2/3.
Thus, equation (4) describes a distribution of Ui

with the mean value PiG−Ci and variance controlled
by the parameter s (see Figure 1). Noise adds a non-
deterministic aspect to the conflict resolution, which

Distributions of Utilities,  G = 20,  s = 1.02
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Rule 1: P = .5, C =  5
Rule 2: P = .9, C = 10

Figure 1: Example of utility distributions for two
rules for G = 20 and noise s = 1.02 in eq. (4). A
rule with the highest utility is preferable. Rule 2 is
more likely to be chosen here.

helps Act–r to select from several production rules
even when their evaluations PiG − Ci are equal.
The fact that rule i has the highest utility does not

guarantee that it will fire. For example, failure to re-
trieve a chunk in the antecedent of a rule will lead
to an instantiation failure, and the rule will not fire.
Retrievals rely on many other parameters in Act–r:
chunks activations, activation noise, retrieval thresh-
old and so on. There may be other parameters in-
volved such as the utility threshold. Therefore, in
order to correctly estimate the probability P (i) for
particular model settings, a series of intensive calcu-
lations would be required, such as the Monte–Carlo
simulations.
Nevertheless, for some studies it may be sufficient

to neglect the effect of mechanisms other than con-
flict resolution on choice of production rules. In such
closed–form approximation the probability P (i) that
rule i will be selected is given by the Boltzmann
‘soft–max’ equation:

P (i) =
eŪi/τ

∑
j eŪj/τ

, (5)

where Ūi is the evaluation of ith rule (PiG − Ci),
and τ is called the noise temperature, which is re-
lated to the variance and noise s parameters as
τ2 = 6σ2/π2 = 2s2

Using the above formula for P (i) and expected
probabilities Pi we can estimate the probability of
success:

P (1) =
1∑

i eŪi/τ

∑

i

Pi eŪi/τ . (6)

Therefore, the entropy H01 of success in achieving
the goal can now be calculated by equation (2).
Note that it is more convenient to use the follow-

ing formula for calculating the empirical probabili-
ties Pi:

Pi =
Successesi

Successesi + Failuresi + 1
.



This is because by default Act–r sets initially all
the probabilities Pi = 1 (the number of successes
is set to 1 initially). Anderson and Lebiere (1998,
p. 135) justify this in order to make the prospects of
a new production optimistic. This approach, how-
ever, is biased and not convenient for calculating
the entropy. Indeed, if at the beginning all Pi = 1,
then the uncertainty of a success H01 = 0, which
contradicts the idea that initial state should be the
maximum entropy state (no experience). The above
formula for the empirical probability is more suitable
to estimate the entropy: it makes the initial values
Pi = 1/2, and probability of success P (1) = 1/2 (see
eq. 6). This corresponds to the maximum of entropy
H01.
Because the number of production rules may

change due to learning new rules, it is convenient
to use the notion of relative entropy:

Hrel =
H01

Hmax
,

where Hmax is the maximum entropy with all states
equally likely (i.e. P (1) = P (0) = 1/2). Redun-
dancy, defined as 1− Hrel, can be a good estimator
of the information accumulated by a system. So, we
can use the reduction in entropy to test how well the
model learns under different parameter settings.

Dynamics of Entropy in a Model
In this section we illustrate the dynamics of relative
entropy in the Dancer model (see Belavkin, 2003,
for details) — anAct–rmodel of the famous “danc-
ing mouse” experiment of Yerkes and Dodson (1908)
(the experiment in which the Inverted–U effect of
strength of stimulus on performance was first dis-
covered). This work despite its respectable age is
still widely cited in the literature. In addition, the
experiment is an example of a typical animal learn-
ing study. In this experiment mice were placed into
a discrimination chamber with two exits, and they
were trained for several days to escape the chamber
through one particular door based on some strategy.
For example, in this study the mice had to learn
to escape only through the door marked by a white
card. The order of the doors was changed randomly,
so the mice had to learn to choose the door based
on its colour rather than on its position.
Figure 2 shows a typical trace of one such test in

the model: the Dancer (simulated mouse), shown
as an arrow object, first enters the left door with
a black card, and after receiving aversive stimulus
escapes back into the chamber and enters the right
door with the white card.
It is not possible to describe here all the model’s

features. Nevertheless, let us outline how the model
learns to choose the correct escape door. A choice of
two objects is represented in the model by a chunk
of a special type choice. The model starts with only
two simple production rules matching such goal:

Figure 2: A typical trace of the Dancer model
(Belavkin, 2003).

Choose1st:
IF the goal is a choice of first or second

THEN focus on first

Choose2nd:
IF the goal is a choice of first or second

THEN focus on second

The two conflicting rules above do not use any fea-
tures of the objects, and due to the noise in the
conflict resolution (eq. 4) they implement a ran-
dom choice strategy. In order to choose the door
correctly the model needs to learn new production
rules that use features of the doors as constraints.
These rules are added into the procedural memory
of the model using the Act–r production compila-
tion mechanism. After entering the wrong door, the
model recalls the last choice it has made, and using
the information about the two objects contained in
the choice chunk the model compiles a new rule. The
new production rule is similar to the two rules shown
above: it also matches the choice goal. However, the
new rule uses additional constraints. For example,
below is an example of a rule that prohibits choosing
the black door:

New-Choice-Rule:
IF the goal is a choice of first or second

AND first is a black door
THEN focus on second

The rule above uses only one feature — colour. An-
other feature that can be used in a new rule is the
door’s position (left or right). Rules using only one
feature implement one–dimensional learning. The
model may also learn rules with both colour and po-
sition as constraints (two–dimensional learning).
In their experiment Yerkes and Dodson performed

10 tests per day with each mouse for up to 30 days
(training series). The number of errors for each day
was recorded, and if the mouse did not produce any
errors for three consecutive days, the experimented
was terminated. Yerkes and Dodson referred to this
moment as the perfect habit formation. Figure 3
shows an example of the error curve produced by
the model simulating these tests with perfect habit



formed on day 8. Note that during the first two days
the mice were allowed to escape through any door
(preference series denoted by letters A and B).
In a series of tests the model learns up to six new

production rules, of which some prove to be more
successful than the others. For example, the new–
choice rule shown above is the most successful strat-
egy in this experiment, because it prohibits choosing
the black door and does not contain any redundant
information (i.e. door position). Using the subsym-
bolic parameters learning mechanism of Act–r the
model learns statistically the probabilities Pi and
costs Ci of the new rules. Selecting rules with the
highest utility (eq. 4) allows the model to reduce
the number of errors. Figure 4 shows the dynamics
of probabilities of all the rules matching the choice
goal. The corresponding dynamics of the relative
entropy of success Hrel associated with these rules is
shown on Figure 5.
Although the error curve (Figure 3) suggests that

the task performance improves, this curve does not
really provide much information about learning in
the model. The traces of probabilities (Figure 4)
give much more detailed picture: one can see that
new rules are added during training days 1, 5 and 7.
However, it is hard to compare the knowledge of the
model, for example, between day 8 and 9. Moreover,
this representation would be much more obscure if
the number of production rules in the conflict set
was large (e.g. several hundreds of rules).
The entropy plot (Figure 5) unites the information

about probabilities into one curve. It shows exactly
how much the uncertainty reduced even between
day 8 and 9 when no obvious change in probabil-
ities or behaviour is noticeable. More importantly,
the dynamics of entropy emphasises some significant
stages in the learning process: moments of sudden
information changes when the number of errors in-
creases and the new rules are learned, such as on
day 5 and 7. An increase of entropy can be explained
by changes in probabilities and addition of new rules
to the conflict set. As we can see, entropy proves to
be a convenient tool for the analysis of learning in
the model and its behaviour.

Estimating the Knowledge
Reduced entropy of success H01 states that the suc-
cess of a problem solver (the model) is more certain,
and it takes into account not only the knowledge ac-
quired, but also the way this knowledge is used to
make decisions. Indeed, the choice probability P (i)
described by equation (5) was used to calculate the
probability of success P (1) in equation (6). How-
ever, as was noted before, the choice of rule i (and
P (i)) depends on the architecture and its parame-
ters. For example, in Act–r P (i) depends also on
the noise temperature τ (see eq. 5). Thus, entropy
H01 is not convenient for estimating learning in the
system under different noise settings.
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Figure 3: Error curve produced by the model in one
experiment.
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Figure 4: Dynamics of probabilities of rules match-
ing the choice goal. The number of these rules in-
creases due to compilation (learning) of new rules.
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Figure 5: Relative entropy of success of the choice
rules. Entropy increases with the number of errors
(see Figure 3) and when new rules are learned.

To make the estimation of knowledge learned by
the system independent of the decision making and
other mechanisms in the architecture let us assume
that the choice of a rule is completely random:
P (i) = 1

n , where n is the number of rules (deci-
sions). In this case probability of a success P (1) can
be calculated as

P (1) =
1
n

∑

i

Pi . (7)

The entropy associated with this probability (calcu-
lated similarly by eq. 2) can be used to estimate the
knowledge accumulated in the system in the form of



empirical probabilities Pi, because it is independent
of the way the decisions are made. We shall refer to
it as the entropy of knowledge Hk.
The value of Hk is that it decays differently un-

der different parameters settings in the architecture.
Thus, it shows what conditions facilitate the in-
formation acquisition. For example, it turns out
that although noise in the Act–r conflict resolu-
tion (eq. 4 and 5) may seem to hinder the perfor-
mance of the model, it in fact helps to learn the
expected probabilities of rules faster. Figure 6 illus-
trates the probability learning in the Dancer model
for different noise settings. The left plot shows traces
of probabilities during 10 simulated days with low
noise τ = .05 (or T = 1% of goal value G), and
the right plot for high noise settings τ = 1 (or
T = 20%).1 Probabilities on the right plot were
updated much more often, thus have more correct
values. The corresponding entropy Hk is shown on
Figure 7. One may see that by day 10 the entropy on
the right plot decayed significantly more than on the
left plot. Thus, by day 10 the model with a greater
noise gained more information than the model with
less noise.
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Figure 6: Probability learning under a low noise
(left) and a high noise conditions (right).
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Figure 7: Dynamics of entropy under a low noise
(left) and a high noise condition (right).

Use of Entropy for Control
Results of some Act–r models suggested that the
models could fit the data better if the noise variance
in conflict resolution was decreasing during prob-
lem solving (Jones, Ritter, & Wood, 2000; Belavkin,

1Here T is called relative noise defined as 1
G

τ · 100%.

2001). Moreover, the analysis of Hk reduction for
different noise settings in the conflict resolution lead
to a speculation that subjects strategically control
the variance of the noise (Belavkin, 2003). Indeed,
dynamic noise may have a very useful optimisation
purpose:

1. Noisy behaviour in the beginning of problem ex-
ploration supports gaining information about the
task or the environment more quickly.

2. After the important information has been ac-
quired, the reduction of noise allows narrowing
the search and concentrate on more successful de-
cisions. If the learned knowledge is correct for the
task or the environment, then keeping the noise
low should improve performance.

3. If the environment changes and the number of
errors suddenly increases, then a noise increase
widens the search and allows speeding–up the
learning process again.

Note that the dynamics of noise variance de-
scribed above corresponds to the dynamics of en-
tropy in the model (e.g. Figure 5). A simple way
to control noise variance by the entropy parame-
ter has been proposed recently (Belavkin, 2003).
More specifically, the relative noise temperature T =
1
Gτ · 100% (τ2 = 2s2) was modified in time as:

T (t) = T0Hrel(t) , (8)

where t is time, T0 = T (0) is the initial value of
the noise, Hrel(t) is relative entropy of success for
the task–related productions. In the Dancer model
these are rules that make the choice of the door.

Comparison of the Model with Data

As predicted, the above described modification sig-
nificantly improved the model performance. Table 1
compares the best results of the model with static
noise settings and the model with noise controlled
by equation (8). The table compares models evalu-
ated on data Set I from Yerkes and Dodson (1908)
for three levels of stimulation: weak (125), medium
(300) and strong (500) stimulus. One can see that
both the coefficient of determination (R2) and the
root–mean–square error (RMS) have improved for
the model with dynamic noise.
Figure 8 shows one to one comparison of the error

curves from data for three levels of stimulation in
Set I with the corresponding curves of the model
with static noise. Comparison with the dynamic
model is shown on Figure 9. One can see that the
distributions of errors for the dynamic model fit bet-
ter the experimental distributions. This pattern of
improvement is consistent for different data sets.



Model  ( T = 5%, G = 50 )   vs  Data  ( set 1, 125 )
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Model  ( T = 1%, G = 500 )  vs  Data  ( set 1, 300 )
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Model  ( T = 10%, G = 500 )  vs  Data  ( set 1, 500 )
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Figure 8: Static model compared with three sets
of data (Yerkes & Dodson, 1908). Left: learning
curves. Right: regression plots.

Table 1: Comparison of models with static and dy-
namic noise variance to Yerkes and Dodson data.

Static noise Dynamic noise
Data set R2 RMS R2 RMS

Set I–125 .54 12.2% .64 10.1%
Set I–300 .77 13.2% .86 8.8%
Set I–500 .82 12.4% .88 7.1%

Conclusions
It has been shown here that some architectures pro-
vide sufficient information to estimate the value of
entropy in a model. The reduction of entropy be-
comes a useful tool for representation and analysis of
the model learning. Using entropy we demonstrated
on an Act–r model that increased noise variance
on certain stages of problem solving helps the model
to learn faster. In addition, we showed that entropy
reduction can be used to control the decay of noise
variance, which in turn significantly improved the fit
of our model to data. We hope that this paper will
encourage other cognitive scientists to consider using
this approach to analyse and improve their model’s
ability to match and explain human performance.
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