

 1

Lessons from decompiling an embodied cognitive model
Audrey Girouard1, Noah W. Smith1, Frank E. Ritter2
audrey.girouard@tufts.edu, noah.smith@tufts.edu, frank.ritter@psu.edu
1Tufts University (United States)
Department of Computer Science
2The Pennsylvania State University (United States)
College of Information Sciences and Technology
Applied Cognitive Science Lab

Abstract
Cognitive models and intelligent agents are becoming more complex and pervasive. It is time
again to consider high-level behavior representation languages and development environments
that make it easier to create, share, and reuse cognitive models. One of these languages is Herbal,
a high-level behavior representation language. Users represent knowledge in Protégé, an
ontology editor. Herbal compiles this knowledge into cognitive models in Soar, a rule-based
cognitive architecture. Herbal includes the ability to automatically link the resulting models to
dTank, a simple, distributed tank game co-developed with Herbal.

To understand the theoretical implications of the process of compiling cognitive models from
high-level descriptions more clearly, we generated by hand the Herbal high-level description of a
well-written, medium-sized (50 rule) Soar model that plays dTank. This process is a type of
decompilation process, of going from low- to high-level language, that yields lessons for both the
compiler and the process of modeling. Many of the constructs in the model were supported by
Herbal, particularly elaborations and simple and regular actions. In some cases, Herbal’s
representation prevents the user from generating incomplete, incorrect or atheoretical code—we
saw hand written code that cannot be generated by Herbal because it is incorrect or overgeneral.
This process also highlights problems with Herbal. Certain types of theoretically sound hand-
written rules do not yet possess an exact translation to the high-level language (mostly
knowledge about which action to chose, and links across known representations). We have
several suggestions for constructs to be added.

This process of decompilation illustrates how users are creating models and could do so more
easily and less error prone with more appropriate languages, in addition to helping develop
Herbal, and, if automated, this decompilation process done by hand could lead to a
decompilation feature in Herbal to help explain raw Soar code.

Introduction
Cognitive models and intelligent agents are becoming more complex and pervasive. It is time
again to consider high-level behavior representation languages and development environments
that make it easier to create, share, and reuse cognitive models. High-level languages provide a
way to understand architectures of cognitive models.

For handing out at Cognition 2006, Montreal

 2

One of these languages is Herbal (Cohen, Ritter et al. 2005 2005). As a collection of tools,
Herbal is a development environment for producing cognitive models in Soar (Lehman, Laird et
al. 2005), a rule-based cognitive architecture. Users represent knowledge in Protégé, an ontology
editor (Stanford Medical Informatics 2004), and Herbal compiles this knowledge into cognitive
models in Soar, a rule-based cognitive architecture. Herbal includes the ability to automatically
link the resulting models to the dTank environment (Morgan, Ritter et al. 2005), a simple,
distributed tank game co-developed with Herbal.

We are exploring the theoretical implications of the process of compiling cognitive models from
high-level descriptions. This knowledge is important because it is a methodology for studying
models and cognition, as well as a way to understand agent and cognitive architectures.

Decompilation
One way to understand a high-level language is to use a low-level one and “decompile it.” In
other words, it is necessary for a high-level language to retain as much of the expressiveness of
the low-level language as possible, all the while providing the power that another level of
abstraction brings. Thus, a high-level language must be able to reproduce at least the behavior of
a program written in the lower-level language, if not the exact code. Furthermore, the high-level
language should ensure that it compiles to well-formed constructs in the low-level language, and
in the process eliminate both common bugs and poor programming practice.

To evaluate the Herbal high-level language on these criteria, our first step was to construct a
Herbal model that reproduced (as closely as possible) the functional elements of a well-written,
medium-sized (50 rule), Soar model called basic_tank (Councill 2003), included with the dTank
environment. Our main objective with this exercise was to determine how well Herbal retains the
expressiveness of the Soar language. By working from actual Soar programs rather than from the
Soar language specification, we sought to focus our efforts on the commonly used constructs,
rather than the full extent of Soar 8.5.2.

After noting the details of how this works with Soar, we will attempt to draw some general
lessons for all high-level modeling languages. Those not interested in the details might wish to
skip to the conclusions.

Operator and State Decompilation
The most basic construct in the Soar modeler’s toolbox is the operator, which (in effect)
modified working memory as the model is run. When the pre-specified conditions for its
application are present, the operator attempts to create changes in working memory, or by means
of the output mechanism, allows an model to act on its environment.

This basic construct must be preserved in Herbal, at least in this very general sense. In Soar
models, well-formed operators are usually programmed with corresponding linked similar
propose and apply productions, where the propose production matches the conditions required
for the operator to be executed to completion, and the matching apply production actually
finalizes the action. Thus, multiple operators may be proposed for any memory state, allowing
Soar to choose the most appropriate one (based on its conflict resolution scheme for choosing

 3

operators and additional knowledge).

Herbal follows the same general pattern to provide the same functionality to the high-level
modeler. Operators1 are compiled into matching propose and apply productions, sharing a
common name prefixed by the type. These Operators may be composed of multiple Conditions
and Actions, and Conditions and Actions may be used in multiple Operators within the same
project. In Soar, operators must all access the current state (the current state of working
memory). Similarly, in Herbal, Operators must be associated with a State, which is inserted by
the compiler into the condition of the propose. Herbal supports multiple, named sub-states of the
TopState, but in our experience this is not a feature that is often utilized in Herbal models.

Herbal compiles an Operator into two productions: matching apply and propose rules that are
named after the Operator being compiled (Table 1: lines 1, 10). The name of the State associated
with the Operator is affixed to the state <s> statement of both productions (lines 2, 11). Any
associated Conditions are collected and, for every conditional attribute of the state, a StateMatch
entry is created in the propose production (line 3). The Exp field of the Conditions are included
below the state match section of the propose production (line 4). Lines from the
OperatorMemory section of the Conditions are copied into the operator memory section of the
propose’s action (lines 7-8). For all Actions associated with the Operator, entries in the
OperatorMemory sections are similarly copied into the analogous section of the apply (lines 14-
15). The Exp of the Action is copied into the consequence of the apply rule (lines 19-20).
Actions do not have StateMatch fields. Note that the OperatorMemory sections of both
productions are identical (in this example), and also the lines annotated as exceptions.

Table 1 : Two productions from the water-jug example in the Soar Tutorial (Laird 2004)

1 sp {water-jug*propose*fill Operator name: fill
2 (state <s> ^name water-jug Name of state associated

with Operator
3 ^jug <j>) StateMatch of Condition
4 (<j> ^empty > 0) Expression of Condition
5 -->
6 (<s> ^operator <o> +) Operator preference
7 (<o> ^name fill
8 ^fill-jug <j>) } OperatorMemory of Condition
9
10 sp {water-jug*apply*fill Operator name: fill, again
11 (state <s> ^name water-jug Associated state name,

again
12 ^operator <o>
13 ^jug <j>)  Exception 1
14 (<o> ^name fill OperatorMemory of Action
15 ^fill-jug <j>)
16 (<j> ^volume <volume>  Exception 2
17 ^contents <contents>)
18 -->
19 (<j> ^contents <volume>) Expression of Action
20 <j> ^contents <contents> -)}

1 For clarity, Herbal concepts are distinguished here by a capital letter: Operator, Condition, Action, StateMatches,
OperatorMemory, Exp.

 4

Herbal makes several assumptions about the nature of propose/apply pairs. If a modeler desires
to have the operator memory of the apply match the operator memory of the propose and does
not need to elaborate elements from the state match, then this compilation strategy will hold.

Unfortunately, there are two common Soar constructions that are not supported. Exception 1
(Table 1: line 13) shows that there is no way to insert additional elements into the state match
section of the apply. In the example in Table 1, the element required had been specified in the
propose, so perhaps that knowledge should be carried down into the apply during compilation, if
necessary. The high-level ideal of a single Operator for which there are Conditions and Actions
is very powerful, but perhaps in this case it would benefit from either more communication
between the reference requirements of the Action and the original matching memory items of the
Conditions, or else better ways to further elaborate the Actions.

Exception 2 (lines 16-17) further illustrates the benefits that the latter option would bring, as
there is currently no way to add such code which is external to both the state match (which is
automatically generated) and the operator memory (which often is identical to the propose). The
solution to this issue would seem to be a third field for Actions, which would act in much the
same way as the Exp of the Conditions (see line 4) acts for the propose.

While we are fairly sure that there is no way to exactly duplicate the code in the exception areas
of Table 1, we concede that it may be possible to accomplish the same effect through other
mechanisms in Herbal. However, since one of Herbal’s objectives is to de-obfuscate the
modeling process, those mechanisms should either be obvious or else well documented, and have
found that both need to be improved in Herbal.

The example given in Table 1 raises an additional issue. If a modeler wishes to change in Soar
the value stored under a specific name in working memory that arises, for example, in the code,
it is not as simple as overwriting the old value with a new one. Soar requires removal of the
previous working memory item and the creation of a new one. Observe line 19 in Table 1, in
which an element contents associated with the object j (a jug found in the current state) is added
to memory with a value corresponding to the capacity (volume) of that jug, thus “filling” the jug.
Note also line 20, which removes the old value. This is a very common thing for an Action rule
in Soar to do, and we suggest that Herbal make such actions as easy as possible for the
programmer. Instead of filling in the appropriate Soar code to accomplish the task in the fields of
the Action (which we have shown above to be difficult, if not impossible for this example),
perhaps the modeler could be presented with a dialog which would ask which elements of what
object should be added to working memory under what name, and whether the old value should
be removed. If the case of an overwrite command, it could also add an extra condition clause
with this object as well as the relevant attributes and their current values, eliminating the specific
problem of lines 16-17. This and related wizards (covering mathematical and logical operations
on objects in memory, for example) would make Herbal feel much more like a genuine high-
level language with a state of the art IDE, allowing manipulation of objects and variables rather
than simply a high-level interface frequently requiring the modeler to lapse back into writing
low-level code. When programmers write in a high level language such as Java, they never have
to write byte-code to specify exactly how objects and variables should be handled in memory,

 5

and it would seem that high-level modeling languages should grant their users the same support.

This analysis makes another suggestion as well: for the development of Herbal. In trying to
replicate the code in Table 1 with a Herbal model, we found unexpected behavior in the
compilation of the OperatorMemory (lines 6-7). Given the code ^fill-jug <j> in a

Condition, the Herbal compiler does a little extra (unexpected) work, producing the code ^j
^fill-jug <j>. This is a bug in the Herbal compiler, for this sort of statement is compiled as
expected in StateMatch expressions.

To conclude this discussion of operators, let us examine the abstraction of States in Herbal. In a
Soar model built from a Herbal model containing multiple, named States, the conceptual switch
between states happens when the old <s> ^name is removed from memory and a new one is
added, in a similar process to that discussed above, pertaining to the action of lines 19-20 of
Table 1. Herbal should therefore support an easy and straightforward way to instruct an Action to
transition between States, perhaps with the same “wizard” approach advocated above.

Elaboration Decompilation
Elaborations are high-level concepts in which a production recognizes when a certain condition
is truein working memory and creates appropriate working memory elements as a consequence.
This is useful for creating memory objects that are conditional on ones currently available,
initializing memory elements before they are used, linking states, changing selection preferences,
and simply reporting on the state of the model as it is running. These concepts are usually be
encoded in a single Soar production (as opposed to operators, which require two). They are
designed to support faster, but more ephemeral changes to WW - when the condition no longer is
true, the changes are removed, whereas with operators, the changes stay. The default Herbal
Ontology supports the concept of a basic elaboration, in which a single production (prefixed by
elaboration*) is compiled from a set of Conditions and a set of Actions, and must be associated
with a single, particular state. Since there is no need to transfer operator memory across two
productions, the compilation is very simple: the conditions and actions are copied verbatim into
the Soar production. This implementation is simple and elegant, although the modeler does have
to write low-level code components. In the following paragraphs, we suggest several different
categories of Elaborations that we feel should be available to the Herbal programmer.

State Initialization elaborations should be able to be compiled in such a manner that they ared not
associate with any named state, but instead are more general in their implementation. We suggest
adding a distinct entity called “Initialization” that is a subclass of Elaboration. As per Soar
conventions, this new construct should generate productions with the prefix initialize*.

Initializations are also sometimes accompanied by “link” rules. These rules are used to pull
information from one state into another. Currently, it is impossible to create these links across
known representations, between states. A new construct should be available to perform this duty,
with the prefix link*. The following example was taken from the basic_tank dTank agent, and
illustrates usage.

 6

Table 2 : A link production from the basic_tank agent example

sp {link*directions*to*substates
 "Links direction knowledge to substates."

 (state <s> ^superstate <ss>)
 (<ss> ^direction-knowledge <dk>)
-->
 (<s> ^direction-knowledge <dk>)}

Selection elaborations are productions facilitating a selection between currently co-eligible
operators. Selections are typically ignorant of state name information, so they should be able to
be created without association with any specific Herbal State. We suggest that selection rules
could be created as a distinct entity in Herbal, generating productions with the prefix select*.

Finally, Monitor elaborations do not significantly modify working memory, but rather output
information relevant to the current situation for the user to monitor the current status. Because
this is a standard debugging tool for Soar modelers, this abstraction should certainly be added to
in Herbal. The compiled production should have the prefix monitor*.

Compound Production Decompilation
There are times in writing a Soar model when the modeler wishes to create a series of linked
productions, where (for example) a single propose can have multiple applys. One reason this is
done is in the case where one action is required the first time an operator fires, and a different
action is required the second time in basic Tank. Because Soar does not support logical program
control statements such as IF, this is usually accomplished with two apply productions, named
(for example) apply*first*time and one apply*rest*of*the*time. Due to Herbal’s strict
interpretation of the operator concept as being composed of two productions, it is not
straightforward to encode such an advanced operator. We suggest that there should be some sort
of support for this functionality more directly than having two operators.

Conclusion
The decompilation process we have employed has proven to be a useful methodology for
studying both low- and high-level modeling languages. This approach of decompiling provides a
way to see how these two levels are related, and has served to highlight the strengths and
weaknesses of both modeling environments. A breakdown of how Herbal was able to re-model
the basic_tank dTank program is below, in Appendix A. In analyzing actual models we feel that
we have made comments and suggestions that will most help the development of Herbal, as we
have tried to be very mindful of the needs of the modeler. These suggestions are summarized in
Table 3.

Table 3 : Summary of suggestions for Herbal

1. Expression of the condition of an Action Provide the possibility to add code external to
both the state match and the operator memory

2. High-level libraries Support a high-level library for mathematical
and logical operation on objects in memory

 7

3. Construct for replacing a working
memory object

Support of a dialog to make working memory
object replacement easier

4. Initialization elaborations Creation of a new Herbal object similar to
Elaborations, but not associated with any
particular state

5. Link elaborations Creation of a new Herbal object to support
passing information between different states

6. Selection elaborations Creation of a new Herbal object to select
between actions the agent can take

7. Monitor elaborations Creation of a new Herbal object to support
output of information relevant to the current
situation

8. Compound Productions Support the functionality of linked productions

In conclusion, we would note that it seems possible to automate the process of decompilation on
well-written Soar code-bases, assuming that Herbal supports a broad enough level of
expressiveness. Such a script could help foster reuse of Soar code currently in use and promote
the use of the Herbal platform and apply to other high-level behavior representation development
efforts.

Acknowledgement
???

References

Cohen, M. A., F. E. Ritter, et al. (2005). Herbal: A high-level language and development
environment for developing cognitive models in Soar. 05-BRIMS-044, Orlando, FL, Proceedings
of the 14th Conference on Behavior Representation in Modeling and Simulation.

Councill, I. (2003). Basic_tank, Penn State University.

Laird, J. (2004). The Soar 8 Tutorial, University of Michigan.

Lehman, J. F., J. Laird, et al. (2005). "A Gentle Introduction to Soar, An Architecture for Human
Cognition: 2006 Update."

Morgan, G. P., F. E. Ritter, et al. (2005). dTank: An environment for architectural comparisons
of competitive agents. 05-BRIMS-043, Orlando, FL, Proceedings of the 14th Conference on
Behavior Representation in Modeling and Simulation.

Stanford Medical Informatics (2004). Protégé (Version 3.1.1).

 8

Appendix A: Analysis of Herbal’s support for the constructs contained in the
basic_tank program

An analysis of the productions rules from the basic_tank program shows that almost all of the
propose operators can be decompiled in Herbal, with the exception of the bug found in the
compiler for OperatorMemory objects. Most of the apply operators cannot be modeled, generally
because of a missing feature in Herbal, mostly because of the the inability to add state matches
and/or operator memory in the condition of the rule, but also sometimes because of compound
productions. All elaborations can be reproduced exactly. Other constructs such as initialization,
link and select elaborations have not been exactly reproduced, mostly because of association
with states. Finally, a few rules were not analyzed.

In the basic_tank program, proposes represent 26% of the productions, applys 34%, elaborations,
initializations, link and selection productions 32%, with a 8% other productions. Most of those
could be reproduced with the suggestions proposed.

