

1.1 Anti-Terrorism Planning and Resource Allocation

A substantial stream of ATP systems research has emerged that addresses issues
related to the challenges of supporting intelligence gathering and analysis, and
emergency and crisis response [1, 2]. Less research has so far been aimed at the more
routine but arguably more prevalent activity of defensive ATP, which involves
identifying and prioritizing what should be protected, and the most effective AT
mitigations that can be applied within cost constraints. This activity is carried out
regularly at all levels of government from national to local, and within large
corporations. Supporting this emerging population of non-expert users with
sophisticated ATP systems presents special challenges for decision support system
researchers and designers.

Much of the reported research in the AT domain has focused on the design and
development of information retrieval and aggregation tools for analysis of large data
sets [3], tools for modeling terrorist attacks [4], collaborative tools for counter-
terrorism [5], cyber security [6], and managing privacy [7]. Significantly less evident
in the literature are studies describing the design and evaluation of systems designed
to support anti-terrorism activity, such as planning, decision-making, and emergency
response, and what can be done to make these systems more effective and efficient.

Additionally, there is limited reported research on development of agent
environments for real-world complex environments. One of the few research reports
on agent environments for complex problems has been the Phoenix forest fire
simulation environment [8]. We believe that our work also contributes towards the
research knowledge in this domain.

In this paper, we describe an approach to service-oriented and agent-centered
architecting of complex, web service-based applications and systems. Our objective is
to develop a design reference model for ATP that views such systems as consisting of
a network of human and technological actors working together to perform complex
cognitive tasks. We describe the application and demonstrate the potential utility of
these tools through a reference design of a complex, web service-based system to
support anti-terrorism planning.

1.2 U.S. Marine Corps ATP

Anti-terrorism planning is a distributed, high-priority activity at Marine Corps
installations. Personnel in a number of different roles are concerned with ATP
including public works officers (typically civil engineers from the Navy), anti-
terrorism officers, provost marshals (military police), command, and civilian facility
planners. They identify and assess mission priorities, threats, and vulnerabilities;
assess and select appropriate ATP mitigations; write ATP project plans and
specifications; manage ATP budgets; and work with commanding officers and the
headquarters Marine Corps to ensure that ATP objectives are being met. The types of
projects they manage include ATP mitigations for new construction, ATP upgrades
and retrofits to existing structures, and structures such as blast walls purpose-built to
protect identified mission critical areas.

The study reported here involved work with the United States Marine Corps on
development and evaluation of a decision aid for defensive anti-terrorism planning
and resource allocation. The system is called Rampart, and implements a hybrid
decision model for asset prioritization, determination of mitigation project utility, and
optimal allocation of constrained resources. In addition, it includes tools to support
user learning, improve user performance, and assist users in reflective analysis of
computed results.

2 The Rampart ATP System

Our early work on ATP requirements identified three major problem sub-components
in the ATP planning domain: prioritization of facilities and other assets to be
protected, computing the relative utility of different AT mitigations and mitigation
projects (the latter are combinations of mitigations), and allocation of available
resources (money, time, people, or other resources) to protect the highest priority
facilities with those mitigations providing the highest utility. A high-level view of this
conceptualization is provided in Figure 1.

Identify
Prioritization

Criteria

Identify
Facilities to
Prioritize

Calculate
Facility

Priorities

Identify
Candidate
Mitigation
Projects

Identify Project
Cost-Benefit

Factors

Calculate
Mitigation

Project Utilities

Determine
Installation

ATFP Budget

Calculate
Budget

Allocations

Budget
Allocated to

Highest Utility
Projects

Fig. 1. The Rampart ATP Conceptual Model.

Anti-Terrorism Officers (ATO), facilities planners, or emergency response
personnel (henceforth referred to as users) require the functionality shown in Figure 1
because they have assets (e.g., different facilities at a Marine Corps installation) to
protect, as well as a budget to be allocated among some mitigation projects, which in
turn are created to protect a given asset. Mitigations are those activities and materials
that can provide protective benefit, such as installing glazing upgrades or placing
stand-off barriers around mission critical facilities. Mitigations provide protective
benefit by protecting the facilities, the equipment housed in them, and, most
importantly, the people who work or live in them. The facilities are ranked according

to a set of criteria where their resulting weights represent the relative importance of
each one.

User activities include the identification of prioritization criteria, pair-wise
weighting of these criteria, identifying the different infrastructure facilities to be
protected, pair-wise weighting of the facilities against the previously identified
prioritization criteria, and design of mitigation projects that might be applied to
identified facilities. For example, stand-off barriers (the mitigation project) paced
around a tank farm (the facility) at an oil refinery (the infrastructure). The costs of the
mitigations, the relative importance of the various facilities and the available budget
are used as input for a mixed-integer linear program to arrive at an optimal resource
allocation. Users also have the flexibility of adjusting the system-generated results by
using the override features that are provided for each sub-task in the planning process.

2.1 A Service- and Agent-oriented Architecture for ATP

The vision of the semantic web [9] suggests a future computing environment in
which humans, intelligent agents, and web services interact to carry out complex
tasks. Design theories and principles for systems conforming to this vision are,
however, fragmented into issues specific to the sub-fields of usability engineering for
humans, software and knowledge engineering for intelligent agents (agent-oriented
software engineering), and web service architectures. This presents a challenge for
developers of these systems because they lack a source that integrates these disparate
ideas into a cohesive design framework. The Rampart architecture is based on the
model-view-controller (MVC) architectural pattern, as shown in Figure 2.

Fig. 2. The Rampart Agent Architecture

As shown in Figure 2, the model layer consists of a set of coarse and fine grained
web services that provide the fundamental decision making functionality. Coarse-

grained services are those aligned with the goals of a Rampart end user. For example,
Add Prioritization Criteria or Compute Resource Allocation. The finer grained
services are specific smaller service components that contribute to achieving the
coarse grained service functionality. The controller layer consists of a piece of custom
middleware, the Interaction Controller, and two agents we call the Goal Controller
and the Reflection Controller. The controller layer is instrumental in managing the
interaction between the view (web pages), the specific web service requests, and
agent suggestions, based on the state of the system. Besides directing the application
workflow, the controller is also responsible for managing the exchange of messages
between the view and model layers.

The view layer is the Rampart Client implemented as an Adobe Flex™ web
application. This paper focuses on the first two of these three levels (i.e., the model
and controller levels); the view, or web client layer will not be discussed further.

This implementation of the MVC architectural pattern separates the system into
three levels of abstraction. The MVC facilitates the process of decoupling where
functions can be created as independent modules with no knowledge of the other
modules. In this case, only the controller has information about the modules either at
the model level or at the view level. The MVC paradigm allows each level to be
implemented independent of their physical location (i.e. server or other computer),
which is an important feature and benefit of modularity.

2.2 Rampart Web Services (Model layer)

One of our goals in the development of Rampart was to use web services to
encapsulate the fundamental units of decision making and other support services
provided to the system’s users. Initially, this was driven by the need to have flexible
and re-composable web services. Requirements in the ATP domain change rapidly
and we wanted the ability to ‘plug’ and ‘unplug’ services without making major
changes to the web client. The use of web services as functional modules also
contributes to the system’s scalability and more efficient performance. As the demand
for a particular system capability increases, the related web services providing it can
be re-deployed to a different server to avoid potential overload.

Web services provide a single, discoverable interface standard for computing
functionality. One of our objectives here is to leverage this homogeneity so that
people and agents can discover, comprehend, and use services in a flexible manner
that allows them to compose solutions to ATP problems. The use of web services to
provide Rampart’s core functionality also allows that functionality to be easily used in
other, related applications, such as a dynamic simulation environment.

The design of Rampart has taken into consideration the discrete functionalities of
the system and the division of these functionalities into modules. Seeking the most
appropriate integration of the modules (cohesion) with the least amount of
dependencies between them (coupling), we developed a flexible composition schema
(see Figure 3). An ATP task analysis was used to predict how modules should be
connected, and how modules should be defined to increase cohesion, on the one hand,
and to decrease coupling, on the other. Each module represents a complete, discrete

functionality within the system, except for those high-level modules that are formed
by the composition of other modules.

Fig. 3. Rampart Services Composition Schema

Figure 3 provides a simplified depiction of the dependencies between different
Rampart services. The dotted lines represent the dependencies between modules,
which are important representations of modular (service) cohesion and coupling.
Although, the system presents a good level of modularity, the data structure and the
service composition still poses a limitation for achieving the high cohesion and low
coupling necessary for efficient service reuse and extensibility.

The service with the least cohesion is Budget Allocation, which is composed of
capabilities related to the allocation model, cost-benefit factors, mitigation projects,
facilities weight, and cost. This module also presents the highest level of coupling due
to its data dependencies, so-called data coupling, where inputs for budget allocation
come from the results of other modules. Figure 4 provides a further decomposition of
the model (web service) layer showing the operations implemented in the criteria
service.

The criteria service consists of three coarse-grained services representing the tasks
the user must perform. As part of completing their resource allocation task, a Rampart
user must create/edit criteria, perform a pair-wise weighting of the criteria, check for
the consistency of the criteria weights, and view the relative ranking of the criteria
based on the weighting. These tasks are represented using the three coarse-grained
services: Edit Criteria, Weight Criteria, and Show Criteria Scores. Each of these
coarse-grained services has several underlying fine-grained operations that support
the higher level service. For example, the Edit Criteria service consists of several

operations including getting the list of current criteria, and inserting, updating, or
deleting criteria.

Criteria Page

Get Criteria List

Insert Criterion

Get Criterion Inform ation

Update Criterion

Delete Criterion

Get Criteria List

Criteria Matrix Page

Insert Criteria Param eters

Calculate Criteria W eight

View W eight Scores Page

Get Criteria List

Get Criteria W eights

Edit CriteriaCriteria

W eight Criteria

Show Criteria Scores

Fig 4. The Rampart Criteria Web Services

Despite the general opinion that the module and view can communicate directly to
each other for the purpose of message passing, Rampart uses a controller based
centralized architecture for message exchange (i.e., for receiving and forwarding).
This approach reduces coupling between modules because each layer becomes an
isolated and independent module and increases granularity and composition because
each layer is then responsible for its own functionality. In other words, a function can
be handled by only one of the layers.

Figure 5 shows an example of the message passing sequence in the Rampart
environment. In the figure, the sequence of message passing between the web client,
the interactive daemon controller, agents (goal and reflective), and the web service is
shown. While this process involves several levels of message passing (between the
agent, client and the services), the control solely rests with the daemon. This control is
useful, especially in the goal controller agent, where decisions are made in response to
user actions.

Human

Rampart Client Rampart Daemon Goal Controller Reflection Controller
Prioritization Service

Package

prioritization scenario prioritization scenario

show criteria CRUDshow criteria CRUD

*enter criterion
criteria ontological explanation

*insert criterion

*insert criterion

*insert criterion

show criteria weight pageshow criteria weight page

criteria weight ontological explanation

show criteria weight page

*enter criteria weights

get criteria list

get criteria list

*insert criteria weights *insert criteria weights

*insert criteria weights

*insert criteria weights

compute criteria priority

compute criteria priority

show criteria priority pageshow criteria priority page show criteria priority

criteria priority mechanistic explanation

criteria weight ontological explanation

criteria ontological explanation

criteria priority mechanistic explanation

select prioritization

prioritization scenario

*insert criterion

Fig. 5. The sequence of message passing in the Rampart environment

2.3 Rampart Agents and Daemon (Controller layer)

In the classical MVC architecture pattern, the controller layer mediates between the
interactions of the user with the view layer (e.g., the Rampart web client) and the core
functionalities provided in the model layer. The Rampart controller layer is composed
of two Soar [10] agents and customized middleware (the Rampart daemon) designed
to mediate between the Flex-based Rampart web client and the core Rampart web
services. The daemon is responsible for message passing, acting as a sort of ‘traffic
cop’ between requests from the user, the functionality embedded in the web services,
and the supporting knowledge embedded in two intelligent agents.

The Rampart goal controller and reflection controller agents were developed using
the Herbal agent development environment [11] and the Soar cognitive architecture
[10]. The purpose of the goal controller is to help align the actions of the user,
especially novice users, with a normative model of the ATP and resource allocation
task. The goal controller knowledge base was derived from an empirical analysis of

Marine Corps anti-terrorism planners using an earlier version of the system [12]. This
field evaluation of Rampart suggested that the system’s diverse user base requires
significant support to create effective ATP models.

Fig. 6. Rampart daemon architecture

As described earlier, the daemon interacts with the web services and the client
through a sequence of message handlers. As shown in Figure 6, the Rampart daemon
acts as the middleware between the web client and the services. The daemon
architecture handles messages coming from the user (web client), web services, and
the agent. The sequence of actions can be described as follows: a user action (e.g.,
user clicks add new criteria) will trigger an event to check for possible suggestions
from the agent. Based on the agent suggestion, web services are instantiated and the
user is directed to the appropriate page to add the criterion. Any agent suggestion is
also provided to the user at this time.

The purpose of the Rampart reflection controller agent is to act as a design critic
[13], examining the user’s evolving ATP model as it is constructed and offering
advice to improve it. Model building in Rampart is a form of design problem solving.
The solution to be designed is a planning model that identifies and weights the
appropriate prioritization criteria, facilities, mitigation projects, and mitigation project
utility factors. Like most design problems there are constraints, in particular, the
major constraint is the budget available to support protecting a particular
infrastructure. The reflection controller supports the user by its awareness of these
constraints and their effect on the possible improvements to the planning model.

The reflection controller is designed to act as a human ATP expert looking over the
user’s shoulder. Essential to providing effective support is tracking the user’s actions,
knowledge of their goals and intentions, an understanding of the system’s
functionality, and awareness of the current state of the user’s ATP model with respect
to the form of an idealized or normative model.

Our work so far on the Rampart agents has focused on the relatively easy tasks of
supporting ATP workflow and basic critiques of the ATP model as it is constructed.

Much more difficult is establishing an understanding of the user’s intentions and
goals from using the system. Moving forward we are interested in exploring more
sophisticated ways of understanding the user’s context and for supporting them more
effectively in their work with the system.

3 Lessons Learned

Rampart’s web service architecture has provided significant benefits during system
re-design and extension. The relatively low coupling between the model (web service)
and other MVC architecture layers allowed us to create an entirely new web-based
client and to integrate intelligent agents into the systems workflow without major
changes to the core functionality implemented in the web services themselves.
Rampart’s architecture also supports re-purposing the core decision support
functionality in the model layer. For example, any one of the three packages of
functionality (prioritization, project utility, or resource allocation) can be accessed as
stand-alone modules to support a more limited-use client. At the same time, Rampart
users could also decide to integrate third-party prioritization ranking, project utility, or
allocation web services to meet specialized ATP requirements.

One of the major drivers of granularity in web services is performance. High-level,
outward facing services can play a role as a cache for subsequent calls to finer grained
services that are easier for developers to reuse and for agents to compose into
customized services. This approach to web services architecture does, however,
present performance challenges, and these may be particularly important in domains
such as agent-based simulations operating in real time.

Service composition is one of the most important paradigms of web service based
applications. In large complex systems, composed of multiple, interdependent sub-
systems, it is important to design with the purpose of re-using the available
components. Service composition also affords orchestrating new workflows with
relative ease by re-organizing the services to fit the requirements of various user
groups.

We have struggled with the question of whether the agent should provide
assistance with a “one rule at a time” model versus a full model critique. In the first
case, the goal controller agent provides suggestions on what to do next, based on the
current state of the model while the reflection controller examines only the last part of
the model completed. The latter case involves the agents interacting to examine the
entire model in its current state and providing the user with more ‘global’ suggestions,
in other words, everything required to bring the current model to completion.

The Rampart architecture and its supporting agents have so far focused on
providing the user with advice based on application knowledge rather than on the
broader class of ATP domain knowledge. Building more domain knowledge into the
agents —knowledge of terrorism as an activity, civil and mechanical engineering, and
the relative effectiveness of different anti-terrorism mitigations— would enhance the
power of the system as a tool for supporting not only ATP tasks but also as a resource
for learning about the ATP domain more broadly.

One of the ways we are approaching this problem is through the development of an
integrated development environment (IDE) for agents and cognitive models capable
of communicating their design rationale. The IDE, which we call Herbal [11], was
designed from the ground up as a tool for creating agents that are made easier to
develop, use, maintain, and evolve through explanation and design rationale, among
other features. The IDE is in its second major version; it is operational and available
for use by others interested in creating friendlier and more articulate intelligent
technologies (See http://acs.ist.psu.edu/herbal/ for more information).

3.1 Moving Forward

Web services are by design only aware of their own functionality; it is up to humans,
agents, or applications to compose multiple services into a coherent application. One
of our goals moving forward is to allow the Rampart agents to direct service
composition. As it stands currently, the agent is only aware of the services underlying
Rampart in terms of the functionality they provide, but not of how each service and its
operations contribute to a specific end user goal. We are actively researching ways to
infer user goals, for example, through the use of a standard catalog of ATP scenarios
to draw on as a form of case-based reasoning.

One of our goals is to simplify the Rampart daemon middleware into a more
generic set of agent-based explanation services. These services would appear and
behave much like our current web service interface and would provide a consistent
way of using the functionality provided by the goal controller and reflection controller
agents. This service package would also provide tools to allow system users and
developers to gain access to details of the agents’ operations. These services would be
focused on componentizing the agents’ explanation content so that both users and
developers get what they want, when they want it.

4 Conclusion

In this paper, we describe an architecture design reference model for supporting users
of complex, ATP systems. The system employs a web service architecture and
incorporates intelligent agents to support application usability. The system was
developed over several cycles of formative and summative evaluation with potential
users. The architecture and its rationale are useful as a reference design model for
both researchers and practitioners setting out on ATP and development projects.

Acknowledgments
This work was supported by the U.S. Office of Naval Research (ONR) under contract
N00014-06-1-0164. The United States Marine Corps supported development of the
Rampart ATP system. We would also like to thank Laxman Vembar and Maik
Friedrich for their contributions to programming some of the components of the
Rampart Agent.

References

1. Chen, H. Intelligence and Security Informatics for International Security:
Information Sharing and Data Mining. Springer, 2006.

2. Yen, J., Popp, R., Cybenko, G., Taipale, K.A., Sweeney, L. and Rosenzweig, P.
Homeland security. IEEE Intelligent Systems, 20, 5, (2005).

3. Avant, D., Baum, M., Bertram, C., Fisher, M., Sheth, A. and Warke, Y., Semantic
Technology Applications for Homeland Security. in Proceedings of International
Conference on Information and Knowledge Management (CIKM 2002), (McLean,
VA, 2002), 611--613.

4. Popp, R. and Poindexter, J. Countering Terrorism through Information and Privacy
Protection Technologies. IEEE Security and Privacy, 4, 6, (2006), 18-27.

5. Popp, R., Krishna, P., Willett, P., Serfaty, D., Stacy, W., Carley, K., Allanach, J.,
Haiying, T. and Satnam, S., Collaborative Tools for Counter-Terrorism Analysis. in
Aerospace Conference, 2005 IEEE, (2005), 1.

6. White, G.B. and DiCenso, D.J., Information Sharing Needs for National Security. in
System Sciences, 2005. HICSS '05. Proceedings of the 38th Annual Hawaii
International Conference on, (2005), 125c.

7. Davies, S. A year after 9/11: Where are we now? Communications of the ACM, 45, 9,
(2002), 35-39.

8. Cohen, P.R., Greenberg, M.L., Hart, D.M. and Howe, A.E. Trial by Fire:
Understanding the Design Requirements for Agents in Complex Environments. pp.
32-48, 1989. AI Magazine, 10, (1989), 32-48.

9. Berners-Lee, T., Hendler, J. and Lassila, O. The semantic web. Scientific American,
284, 5, (2001), 34-43.

10. Laird, J., Newell, A. and Rosenbloom, P. Soar: An Architecture for General
Intelligence. Artificial Intelligence, 33, (1987), 1-64.

11. Cohen, M.A., Ritter, F.E. and Haynes, S.R. Herbal: A high-level language and
development environment for developing cognitive models in Soar Proceedings of
the 14th Conference on Behavior Representation in Modeling and Simulation,
Orlando, FL, U. of Central Florida, 2005.

12. Haynes, S.R., Kannampallil, T.G., Larson, L.L. and Garg, N. Optimizing anti-
terrorism resource allocation. J. Am. Soc. Inf. Sci. Technol., 56, 3, (2005), 299-309.

13. Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G. and Sumner, T., Embedding
Computer-Based Critics in the Contexts of Design. in Human Factors in Computing
Systems INTERCHI'93, (Amsterdam, Netherlands, 1993), 157-164.

