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Abstract-Cognitive modeling on high performance computing
platforms is an emerging field. A preliminary analysis i s
presented on the use of parallel processing and genetic
algorithms for optimizing the fit of non-linear, multivariable
symbolic models of human cognition to experimental data. The
effectiveness of this experimental optimization methodology i s
illustrated with a prototype model of a serial arithmetic task
built in the ACT-R cognitive architecture. The results confirm
that HPC-based optimization techniques could replace the
manual optimization techniques used by cognitive modelers up
until the present.

I.     INTRODUCTION

The number of available parameters for manipulating a

cognitive model while running under the constraints of a

cognitive architecture often outnumbers the experimental data

points especially as the complexity of the task being modeled

increases. For example, modifying model parameters to

represent the effect of a threatening task appraisal in serial

mental arithmetic performance, or the effects of 400 mg of

caffeine on working memory capacity. The size of the search

space grows combinatorially with the number of parameters

used in the cognitive model.

Our research considers the role of genetic algorithms (GAs)

in overcoming the combinative search spaces associated with

cognitive models. GAs are a type of random search algorithm

inspired by genetics and natural selection. They allow

exploration of the space of potential cognitive theories,

without preconceived notions of what the best parameters

may be. GAs have disadvantages of being demanding in

terms of computational load and memory. However, because

the GA is an inherently parallel algorithm, parallel

implementations of GAs (parallel genetic algorithms or

PGAs) can provide considerable gains in terms of

performance and scalability when studied and used on parallel

machines.

The high-performance computing (HPC) platform utilized

for the PGA component of the project is a Xeon Linux cluster

with 1,450 dual-processor Dell PowerEdge 1750 servers

located at the National Center for Supercomputing

Applications.

The PGA runs the ACT-R cognitive architecture and the

cognitive model. ACT-R is a theory for simulating and

understanding human cognition. Researchers working with

ACT-R are interested in understanding how individuals

organize knowledge and produce intelligent behavior [1].

ACT-R provides a rigorous framework for cognitive

modeling as well as an extensive set of parameters (over 100)

and constraints on cognition to facilitate a priori predictions

about a behavior of interest and psychologically plausible

models in general.

In this case the behavior of interest is a serial mental

subtraction task. Serial subtraction, repeatedly subtracting a

1- or 2- digit number from a 4-digit number is part of the

Trier Social Stress Test used extensively to examine the

physiological effects of stress in a laboratory setting [2].

Human performance data for the serial subtraction task was

collected as part of a series of experiments investigating the

effects of stress and caffeine on cognitive performance.

The human performance data is used to validate the

cognitive model. A close correlation between the model’s

behavior and the human performance data is the goal. This

fitting process is a key component in the Cognitive Science

field, and in the end, determines success or failure of the

research project.

Integrating HPC platforms, parallel processing, and

optimization algorithms such as GAs into the modeling

process points the way towards a more efficient and accurate

model-to-data fitting process for the computational modeling

community.

The paper briefly describes parallel implementations of

GAs and the type of PGA used to optimize the prototype

model. Cognitive models built in the ACT-R architecture are

discussed next, as well as, the cognitive task being modeled,

and the experimental data set used in the fitting process.

Section IV compares the manual optimization used to date in

the field to the parallel optimization methodology. The paper

concludes with a discussion of the results from two PGAs.

II.     PARALLEL GENETIC ALGORITHMS

Based on principles of natural selection and genetics,

genetic algorithms (GAs) have been applied successfully to

numerous problems in business, engineering, and science [3].

GAs are randomized, parallel search algorithms that search

from a population of points [4]. The points (often referred to

as genotypes) represent individuals in a population. The
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genotypes are evaluated for fitness, then propagated to later

generations by means of probabilistic selection, crossover,

and mutation. In the problem context of the project the

genotypes are sets of ACT-R parameters applied to the

cognitive task model. The population evolves to find better

‘solutions’ by selecting the most fit parameter sets (those that

give the best match to the human data), and propagating these

solutions to the next generation.

The stochastic search properties of genetic algorithms

provide an efficient tool for solving problems with large,

poorly understood search spaces, thus, allowing for

exploration of the space of potential cognitive theories in

which to apply to the problem. The search space can also be

seeded (constrained) as knowledge about the context of the

problem space becomes known.

In many practical applications, GAs find good solutions in

reasonable amounts of time. However, in some cases, GAs

can require hundreds of thousands of expensive function

evaluations, and depending on the cost of each evaluation, the

GA may take days, months, or even years to find an

acceptable solution [5]. In this project, the function

evaluation consists of running the model in the cognitive

architecture, analyzing the model’s performance output, and

calculating a fitness value for the model’s predictions. When

considered over a generation of 200 genotypes, for example,

the computational resources required on a single processor

would be significant.

The parallel nature of genetic algorithms has been

recognized for a long time, and many researchers have

successfully used parallel GAs to reduce the time required to

reach acceptable solutions to complex problems. GAs,

working with a population of independent solutions, can

easily distribute the computational load among multiple

processors.

There are several classes of PGAs distinguished by their

level of parallelization. This project utilizes a master-slave

global parallelization PGA. This type of PGA is characterized

by a high computation to communication ratio. In a master-

slave PGA, one master-processing node (with rank 0)

executes the GA-related functions (selection, crossover,

mutation), while the fitness function evaluation is distributed

among several slave processors. The slaves evaluate the

fitness of the genotypes in the population that they receive

from the master, and then return the fitness results back to the

master node. Figure 1 is pseudo code for optimizing a

cognitive model using a master-slave PGA with a message-

passing interface (MPI).

In the project, the slaves each receive a different set of

cognitive architecture parameters from the master, run the

cognitive model in the architecture, collect the model output,

and calculate the associated statistics and fitness value from

the model’s performance. Each slave then sends its fitness

value from the model run back to the master.

MPI_Init . . .

if (rank is 0)  // master

Initialize population

. . . . .

for (each generation)

{

if (rank is 0)  // master

{

Selection

Crossover

Mutation

}

// find fitness of genotypes in population

// master and slaves

MPI_Scatter individuals out to processors

Run cognitive model

Calculate fitness of model predictions

MPI_Gather up resulting fitness values

if (rank is 0)  // master

Print out generational statistics

}

Test best solutions found  // master and slaves

MPI_Finalize . . .

Fig. 1. Pseudo code for master-slave GA using MPI

III.     COGNITIVE MODELS

A symbolic approach to cognitive science holds that

cognition can be explained using operations on symbols, by

means of explicit computational theories and models of

mental (but not brain) processes analogous to the working of

a computer.

A cognitive model, in the form of a working computer

program, is intended to be an explanation of how some aspect

of cognition is accomplished by a set of primitive

computational processes. A cognitive model performs a

specific cognitive task or class of tasks and produces behavior

that constitutes a set of predictions that can be compared to

data from human performance. A cognitive model produces

both a theory of human behavior on a task and a

computational artifact that performs the task.

To represent the intended level of abstraction, many

programming languages designed for cognitive modeling are

production systems. Production systems are used as a flexible

model of the control structure of human cognition. The flow

of processing is controlled by a set of production rules

(condition-action pairs) that can be selected to fire when their

conditions are satisfied. Therefore, the flow of control is at

run time, and is a function of dynamically evolving memory

contents triggering the productions. A cognitive model

written in a production system makes theoretical

commitments at the level of the production rules, and when

built within a cognitive architecture, defines a

computationally complete system. In this cognitive

architecture approach to modeling, the model is a byproduct



International Joint Conferences on Computer, Information, and System Sciences, and Engineering, CISSE 2007

10/05/07 3

of three components: cognitive constraints offered by the

architecture; background knowledge residing in memory; and

the task to be performed.

A.    ACT-R

Many instances of cognitive architectures exist, for

example: ACT-R [6], Soar [7], and Epic [8]. ACT-R is the

product of a community of researchers led by John Anderson

at Carnegie Mellon University. ACT-R is a two-layer

modular cognitive architecture on a production system

framework. One layer contains symbolic representations and

has a serial flow in that only one production can fire at a

time. The second layer is a sub-symbolic layer whose

representations are numeric quantities that are the result of

computations preformed as if they were executed in parallel.

In ACT-R cognition emerges through the interaction of a

number of independent modules. Each of these modules is

associated with specific brain regions and theories about the

internal processes of these modules [9].

The modularity of ACT-R permits the parallel execution of

the verbal system with the control and memory systems

(specifically involved in the serial subtraction task). ACT-R

has been used in models of working memory tasks and

arithmetic processing tasks by other researchers.

B.    Serial Subtraction Task

The cognitive model for this project simulates a human

subject performing the serial subtraction task. Serial

subtraction is the mental arithmetic stressor portion of the

Trier Social Stressor Test (TSST). The TSST has been used

to provide an acute physiological stress response in human

subjects since the 1960’s. The serial subtraction task consists

of four 4-minute blocks of mentally subtracting by 7’s and

13’s from 4-digit starting numbers.

C.    Experimental Data

The cognitive model of the serial subtraction task is

validated with human subject data collected from a larger

project to study the effects of stress, task appraisal, and

caffeine on biomarkers of cardiovascular health [10].

In the serial subtraction task, subjects’ answers were scored

against a list of correct answers from the starting number.

Task performance was voice recorded on a digital camera and

laptop computer. For each subject the number of subtraction

problem attempts were recorded and a percent correct score

was calculated by dividing the total number of correct

attempts by the total number of attempts for each block of the

subtractions. The audio recordings were transcribed to obtain

subtraction pace and details about error types.

Table I shows the subtraction rates for the subjects’

performance on two 4-minute blocks of subtracting by 7s.

There is a wide range of performance on this task suggesting

a high degree of individual differences within the subject

pool.

TABLE I

HUMAN  SUBJECT (N=15) MEAN PERFORMANCE AND STANDARD DEVIATION FOR

SERIAL SUBTRACTION ON 4-MINUTE BLOCKS OF SUBTRACTING BY 7S

7s – 1
st
 block 7s – 2

n d
 block

Number of Attempts 47.3 (15.2) 47.8 (19.2)

Percent Correct 82.0 (10.0) 88.8 (7.0)

Subtraction performance was also analyzed by task

appraisal. During the experiment, pre- and post-task

appraisals were assessed immediately before and at the end of

the serial subtraction stressor session. Based on the appraisal

responses, subjects were categorized into one of two appraisal

groups: challenge or threat. A challenge condition equates to

a subject’s perceived stress being less than or equal to their

perceived ability to cope with the task. In a threat condition,

the subject’s perceived stress is greater than their perceived

ability to cope with the task. Table II shows the subtraction

rates for the subjects grouped by post-task appraisal

condition. For the project the cognitive model was fit to the

mean of each appraisal group.

TABLE II

MEAN PERFORMANCE AND STANDARD DEVIATION BY POST-TASK APPRAISAL GROUP

7s – 1
st
 block Threat (N=8) Challenge (N=7)

Number of Attempts 40.3 (10.1) 55.3 (16.7)

Percent Correct 78.1 (8.2) 85.4 (10.8)

7s – 2
n d

 block

Number of Attempts 44.8 (10.2) 70.7 (23.7)

Percent Correct 84.2 (4.6) 92.5 (6.2)

IV.     OPTIMIZATION PROCESS

A.    Manual Optimization

Traditionally, cognitive modeling researchers use a manual

optimization process to fit the model to the human data. This

time consuming iterative process involves selecting a set of

parameters, assigning a numeric value to each parameter,

running the model in the cognitive architecture, and

evaluating the resulting output against the human data. If the

fit is unsatisfactory, the process is repeated.

The optimization process can be complicated by the

stochasticity built into the cognitive architecture. With a

static set of parameters and values, the combination of the

model and architecture yield a distribution of performance

scores, not a single value. When models include stochastic

effects, the model may require 10, 20, or 100s of runs in

order to compute stable predictions. Table III compares five

example sets of ACT-R parameters used in the serial

subtraction model. For each parameter set, the model was run

10 times and then 100 times. The number of attempts and

percent correct are averaged over the number of model runs.
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TABLE III

MEAN PERFORMANCE AND STANDARD DEVIATION ON SERIAL SUBTRACTION BY 7S FOR ONE 4-MINUTE BLOCK BY POST-TASK APPRAISAL GROUP

ACT-R Parameters Mean Across 10 Model Runs Mean Across 100 Model Runs

ANS BLC SYL Number of Attempts Percent Correct Number of Attempts Percent Correct

0.463 1.693 0.526 42.30 82.56 42.88 85.00

0.399 1.839 0.555 40.30 78.05 40.03 89.74

0.251 1.588 0.529 42.50 80.49 41.57 82.93

0.766 2.619 0.531 40.90 90.00 41.11 78.57

0.654 2.078 0.588 39.60 78.95 38.77 89.47

When comparing model performance between 10 and 100

runs, percent correct shows more variance than number of

attempts. This makes for difficult optimization especially if

both performance statistics are used simultaneously in the

fitting process. Previous attempts at fitting the serial

subtraction model to data from other human subject

experiments using manual optimization techniques have been

unsuccessful [11].

B.    Parallel Optimization

The ACT-R architecture and cognitive model are written in

the Lisp. Generally, message-passing interfaces available on

cluster computing resources are called from C or Fortran

programs. To utilize parallel processing in the cognitive

model optimization process, ACT-R and the cognitive model

are packaged into an executable Lisp image or core file. This

image file can be run by a system call from a C program on

each processor in parallel while utilizing MPI to

communicate genotypes and fitness values among the

processors.

The population of genotypes (ACT-R parameter sets), in

the form of a matrix, are ‘scattered’ row-wise to the

processors. Each processor executes the Lisp image file that

runs the model within the ACT-R architecture. Each

processor then calculates a fitness based on the model’s

performance predictions and the human data statistics. In this

case, sum of the squared error is calculated on both number of

attempts and the percent correct from a block of subtracting

by 7s. The fitness values calculated by the processors are

‘gathered’ up by the master process, which then applies

genetic functions to the population based on the fitness of the

genotypes (refer to Figure 1). This is repeated through any

number of generations with the effect of evolving a set of

candidate solutions.

C.    Serial Subtraction Optimization

Two PGAs were set up to run 50 generations of 200

binary-encoded genotypes. One PGA optimized the model to

the challenge appraisal group means (55.3 attempts, 85.4%

correct), and the other to the threat appraisal group means

(40.3 attempts, 78.1% correct).

A genotype consisting of one 36-bit chromosome is

divided into three 12-bit substrings each representing the

value of an ACT-R parameter. We investigated: activation

noise representing variance in applying procedural knowledge

(ANS), the base level constant affecting declarative memory

retrieval (BLC), and syllable rate, seconds per syllable

(SYL)—because the model verbalizes the answers as the

human subjects do. One processor was allocated for each

genotype.

The selection probability (selection of the fittest) was set

to 0.5 meaning half the population is replaced each generation

by offspring of the fittest genotypes. Random mutations alter

a certain percentage of the bits in the list of chromosomes.

This operation introduces traits in the original population and

keeps the GA from converging too quickly before sampling

the entire search space. The mutation rate was set at 0.15. The

terminating condition was a specified number of generations

(50), instead of proximity to the appraisal data means. The

fitness function compared the sum of the squared error for the

model’s predicted number of attempts and percent correct to

the corresponding human data.

V.     RESULTS

Typically, GAs generate new points in the search space by

applying operators to current points and statistically moving

toward more optimal positions in that search space. In this

optimization problem, the fitness is in terms of error (or cost)

and is the discrepancy between the model’s predictions and

the actual human performance on the cognitive task. The

PGA in this case is seeking a global minima in the ACT-R

parameter space.

Figures 2 and 3 plot the progress of the PGA as it seeks a

global minima across the 50 generations. Figure 2 shows the

minimum and average fitness when optimizing to the

challenge appraisal group means. Figure 3 is optimizing to

the threat appraisal group means.

Normally, what would be expected for this type of plot is

a smooth, maybe slightly bumpy, curvilinear downward

sloping line as the GA converges on a solution. Figure 2, and

especially Figure 3, show the PGA ‘bouncing’ around the

search space; finding a fit solution in one generation, and
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then tossing it out in the next. Additionally, it appears that

this pattern would continue for infinitely many generations.

Because of the previously discussed stochastic effects

embedded in the model and architecture these results are not

that surprising. Several modifications were built into the

PGA to compensate for a single genotype returning a

distribution of performance predictions instead of an exact

value.

Fig. 2. PGA optimizing to challenge appraisal group

Fig. 3. PGA optimizing to threat appraisal group

During its generational journey, if the PGA finds a ‘good

enough’ solution, as determined by a boundary fitness value,

that particular genotype is remembered for a post-PGA testing

phase. In essence, the PGA is gathering up good solutions

across the generations, instead of converging on a so-called

best set of solutions. Once the PGA terminates, each of the

collected genotypes is run on all the processors with the

fitness calculated from the mean number of attempts and

percent correct across all runs (200 runs per genotype).

While optimizing to the challenge appraisal group the

PGA collected 17 genotypes for additional testing. During

threat appraisal group optimization, 9 genotypes were

collected. After the final generation of the PGA, these

genotypes were run in parallel on all the processors using a

master-slave/MPI approach. Table IV lists the four best

fitting genotypes (by post-PGA test) from each appraisal

optimization collected by the PGA. The second column

shows the genotypes’ original fitness value as reported by the

PGA compared to their fitness values from post-PGA testing

in the third column.

TABLE IV

GENOTYPE FITNESS COMPARISON BETWEEN PGA AND POST-PGA TESTING

Genotypes Fitness

Challenge Optimization PGA Reported Post –PGA Testing

0.500, 2.083, 0.365 0.093 0.133

0.271, 1.558, 0.360 0.093 1.244

0.561, 2.279, 0.366 0.093 1.696

0.500, 2.083, 0.365 3.597 3.610

Threat Optimization PGA Reported Post-PGA Testing

0.727, 2.538, 0.535 6.191 0.986

0.729, 2.524, 0.593 6.008 7.072

0.693, 2.446, 0.586 3.075 7.896

0.713, 2.446, 0.593 3.614 8.325

In the threat appraisal optimization, the genotype

producing the best fitness value reported in the PGA (3.075)

does not correspond to the genotype producing the best

fitness value from the post-PGA testing phase (0.986). In the

challenge appraisal optimization, there were three genotypes

with a fitness of 0.093. One of those genotypes produced the

best post-PGA test fitness value (0.133).

As a validation effort, the best fitting set of ACT-R

parameters from each appraisal optimization was tested with

three additional sets of 200 runs each. Table V shows the

number of attempts and percent correct averaged over each of

the 200 runs, and a comparison of the model’s mean

performance to the subjects’ mean performance by appraisal

group.

TABLE V

VALIDATION OF BEST FITTING PARAMETER SETS FROM APPRAISAL OPTIMIZATIONS

Challenge Appraisal Performance

ACT-R Parameters Number of Attempts Percent Correct

55.0 83.5

55.1 83.00.500, 2.083, 0.365

55.0 84.7

Model Performance Means 55.0 83.7

Human Data Means 55.3 85.4
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Threat Appraisal Performance

ACT-R Parameters Number of Attempts Percent Correct

40.8 76.5

40.9 78.50.727, 2.538, 0.535

40.8 77.4

Model Performance Means 40.8 77.5

Human Data Means 40.3 78.1

For number of attempts the fit is nearly perfect; a

difference of 0.3 for the challenged subjects, and 0.5 for the

threatened subjects—half a subtraction problem or less. The

fit is slightly less accurate for percent correct; a difference of

1.7 correct subtractions for challenged subjects, and half a

correct subtraction (0.6) for threatened subjects.

In summary, this is a very good fit considering the

complexity of model and the wide range of human

performance on the serial subtraction task. The total run time

on the cluster was minimal; 117 minutes for the two PGAs

including the post-PGA testing phase, and 4 minutes for the

additional best solution validation runs.

It would be important to consider past cognitive science

research and potential theory development in the analysis and

interpretation of the most promising of the PGA genotypes

returned from the testing phase.

VI.     CONCLUDING REMARKS

By integrating parallel processing on high-performance

computing platforms with stochastic search algorithms, such

as PGAs, cognitive models can be optimized to fit human

subject data efficiently and more accurately then tradition

manual optimization techniques.

The stochasticity built into the architecture requires

cognitive models of tasks characterized by wide performance

variance to be run 10, 20, or 100s of times to compute stable

performance predictions. The serial subtraction task is one

such task showing a wide range of human performance. Using

manual optimization techniques to fit a wide distribution of

performance is difficult.

Using 200 processors and approximately two hours of

HPC run time the prototype model of the serial subtraction

task produced over 25,000 predictions of human performance

enabling the fitting of subject appraisal groups and, in the

future, individual subjects. Additionally, the results from this

exploratory optimization process introduce questions about

the nature of the ACT-R parameter space and validity of the

architecture in general. Visualization of the parameter space is

needed to determine if rough terrain corresponding to noisy

data or non-continuity exists.
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