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Abstract 

A parallel genetic algorithm on a high-performance cluster is 
used to fit individual differences found in subjects�’ 
performance of a stressful mental serial subtraction task.  The 
approach leads to a succession of unexpected results, 
interesting questions, and atypical analyses including 3-D 
parametric visualizations of the cognitive architecture and the 
serial subtraction model. 
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Introduction 
A complex cognitive model of a serial subtraction task was 
developed as part of a project to study the effects of stress, 
task appraisal, and caffeine on cognition (Whetzel, Ritter & 
Klein, 2006). Generally, cognitive models attempt to 
explain average performance across subjects, but in this case 
the subjects exhibited a wide range of task performance. 
The pitfalls associated with averaging over subjects have 
been known for a long time (e.g., Siegler, 1987). The 
performance variability associated with serial subtraction 
suggested a high degree of individual differences. This 
performance variability made it difficult to fit the serial 
subtraction model to the human data (Ritter, Schoelles, 
Klein & Kase, 2007). Fitting the model to each individual 
subject�’s performance appeared both necessary (because the 
model�’s predictions did not match the range of subjects), 
and desirable (because it supported understanding individual 
differences, as suggested by authors such as Gobet & Ritter, 
2000, and by Siegler, 1987).  

The model�’s cognitive architecture, ACT-R, offers many 
parameters (over 60) for manipulating the model�’s 
performance. Considering the combinative parametric 
search space, and substantial computational and time 
resources, individual data fitting did not appear a viable 
approach if done by hand.  

A research expedition commenced by considering a 
relatively unused approach to individual data fitting. We 
describe a parallel optimization algorithm�’s efficient, 
accurate, and non-biased fit of the serial subtraction model 
to individual data from 15 subjects. We put this option 
forward as an approach, not necessarily as the most efficient 
or best way to do model fitting.  By plotting the search 
algorithm�’s progress, stochasticity was detected in the 
model and architecture making interpretation of the data 

difficult. The stochasticity directed analysis towards 
individual performance distributions. Upon closer 
examination of the search algorithm�’s results, different 
ACT-R parameter sets were producing nearly perfect fits for 
many subjects. This prompted a second distribution 
exploration, this time of ACT-R parameter values. Analysis 
of the ACT-R parameter distributions raised questions about 
the terrain of the parametric landscape. In the final phase of 
the expedition, snapshots record the parametric landscape 
from a 3-D visualization perspective. The paper concludes 
with thoughts about what the expedition may contribute to 
cognitive modeling. 

Serial Subtraction Task 
A cognitive model was developed to simulate a human 
subject performing a serial subtraction task. Serial 
subtraction is the mental arithmetic stressor portion of the 
Trier Social Stressor Test (TSST, Kirschbaum, Pirke & 
Hellhammer, 1993). The TSST has been used to provide an 
acute physiological stress response in human subjects in 
100�’s of studies since the 1960�’s. The task consists of four 
4-minute blocks of mentally subtracting by 7�’s and 13�’s 
from 4-digit starting numbers.  

Subjects complete the task mentally without visual clues; 
speaking the solution to each subtraction problem. The task 
is performed in front of an experimenter and video camera. 
Subjects are timed and prodded to go faster during the 
course of each block. 

Experimental Data 
Data from 15 subjects in a control condition in a larger 
study were used for the individual differences fitting 
approach discussed here (the others ingested caffeine). 

During the serial subtraction task, subjects�’ answers were 
scored by the experimenter against a list of correct answers 
from the starting number. For each subject the number of 
subtraction problem attempts were recorded and a percent 
correct score was calculated by dividing the total number of 
correct attempts by the total number of attempts for each 
block of the subtractions.  

Table 1 shows the subtraction rates for the subjects�’ 
performance on the two 4-minute blocks of subtracting by 
7s. The large standard deviations indicate that there is a 
wide range of performance on this task suggesting a high 
degree of individual differences. A previous study found 
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that this variability made it difficult to fit the serial 
subtraction model to human data (Ritter, Schoelles, Klein & 
Kase, 2007). 
 

Table 1: Human subject (N=15) mean performance and 
standard deviation for serial subtraction on the two 4-minute 

blocks of subtracting by 7s. 
 

 7s �– 1st block 7s �– 2nd block 

Number of Attempts 47.3 (15.2) 47.8 (19.2) 

Percent Correct 82.0 (10.0) 88.8 (7.0) 

Cognitive Model and Architecture 
Many instances of cognitive architectures exist, for 

example: ACT-R (Anderson, 2007), Soar (Newell, 1990), 
and Epic (Meyer & Kieras, 1997). Our research uses the 
ACT-R version 6.0 architecture. ACT-R has been used in 
modeling working memory tasks and arithmetic processing 
tasks by other cognitive science researchers. ACT-R is a 
two-layer modular cognitive architecture on a production 
system framework. In ACT-R cognition emerges through 
the interaction of a number of independent modules. Each of 
these modules is associated with specific brain regions and 
theories about the internal processes of these modules 
(Anderson, 2007). The modularity of ACT-R permits the 
parallel execution of the verbal system with the control and 
memory systems (specifically involved in the serial 
subtraction task).  

Our model does subtraction in a right to left column order 
with borrow. It has 25 rules and hundreds of declarative 
memory elements. The goal buffer holds the task control, 
the imaginal buffer holds the problem representation, and 
the response is output through the speech buffer.  

Parallel Genetic Algorithm 
A new approach to fitting the serial subtraction cognitive 
model to the human data was attempted using a genetic 
algorithm. Genetic algorithms (GAs) are based on principles 
of natural selection and genetics, and have been applied 
successfully to numerous problems in business, engineering, 
and science (Goldberg, 1994). GAs are randomized, parallel 
search algorithms that search from a population of points. 
The points (often referred to as genotypes) represent 
individuals in a population. The genotypes are evaluated for 
fitness, then propagated to later generations by means of 
probabilistic selection, crossover, and mutation.  

In a cognitive modeling context, the genotypes are sets of 
cognitive architecture parameters applied to the cognitive 
model. The population evolves to find better �‘solutions�’ by 
selecting the most fit parameter sets (those that give the best 
match to the human data), and propagating these solutions 
to the next generation. The fitness evaluation consists of 
running the model, analyzing the model�’s performance 
output, and calculating a fitness value for the model�’s 
predictions compared to the data. A parallel version of the 
GA (PGA) distributes the computational load of the fitness 

evaluation among multiple processors reducing the time 
required to reach acceptable solutions.  

The ACT-R architecture and cognitive model are written 
in the Lisp programming language. A message-passing 
interface (MPI) implemented the parallel processing 
portions of the PGA. ACT-R and the cognitive model were 
packaged into an executable Lisp image file. A prototype of 
the model-fitting PGA is running on a high-performance 
computing cluster at the National Center for 
Supercomputing Applications. Implementation details of the 
PGA, and MPI with ACT-R and the cognitive model are 
explained in Kase (forthcoming).  

The Fitting Process 
Fifteen PGAs were set to run 100 generations of 200 
genotypes taking approximately two hours of runtime on 
200 processors. Each PGA fit the serial subtraction model to 
an individual subject�’s performance data. A previous study 
(Kase, Ritter & Schoelles, 2007) reported preliminary tests 
of the PGA code fitting the serial subtraction model to post-
task appraisal group means representing a challenge and a 
threat appraisal of the serial subtraction task.  The model�’s 
predictions could match the mean but not the wide 
distribution of the data. 

The PGA uses genotypes each representing the value of 
three ACT-R parameters. This set is offered only as a 
plausible and useful set to demonstrate this process.  We 
investigated: activation noise representing variance in 
retrieving declarative information (ANS), the base level 
constant affecting declarative memory retrieval (BLC), and 
syllable rate, seconds per syllable (SYL)�—because the 
model verbalizes the answers as the human subjects do. One 
processor was allocated for each genotype.  

By running the model with the associated parameters and 
comparing the resulting predictions to the data, each 
genotype is associated with a fitness value. In this case, sum 
of the squared error was calculated on both number of 
attempts and the percent correct from a block of serially 
subtracting by 7s. The fitness is in terms of error (or cost) 
and is the discrepancy between the model�’s predictions and 
the actual human performance on the cognitive task. The 
genotypes offering the best fits were run an additional 200 
times to ensure stable model predictions. 

Individual Data Fits 
We would like the serial subtraction model to predict the 
same range and distribution of performance produced by the 
human subjects. Table 2 summarizes the results from fitting 
the model to performance data from the 15 subjects. The 
last row in Table 2 shows results of fitting the model to the 
average performance across all 15 subjects. 

Considering the complexity of the serial subtraction task 
and the human performance variability, these are 
exceptional model to human data fits. For number of 
attempts and percent correct, all subjects were fit within a 
fractional part of a subtraction problem. Table 2 lists only 
one fit for each subject�—the solution resulting in the lowest 
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fitness value. The PGA actually produced a set of solutions 
for each subject. For example, when fitting to S16�’s 
performance, the PGA found 9 different genotypes with 
fitness values less than 1.0. Genotypes are sets of ACT-R 
parameter values (ANS, BLC, SYL); the PGA finding 
different genotypes yielding nearly perfect fits was 
unexpected.  

 
Table 2: PGA fit results for the 15 subjects and an 

average across subjects (last row) comparing human 
performance and model predictions in number attempts and 
percent correct (both rounded), and fitness value associated 

with the genotype (ANS, BLC, SYL).  
 

Subject 
Human 

Performance 
Model 

Prediction 
Fitness 
Value 

Genotype 
(ACT-R parameters) 

1 28, 67.9  28.0, 67.8 0.0006 0.83, 2.76, 0.87 

47 29, 62.1  29.3, 62.0 0.0866 0.66, 2.25, 0.83 

25 31, 80.7 30.8, 80.8 0.0487 0.48, 2.25, 0.76 

11 35, 65.7 34.5, 65.1 0.6836 0.82, 2.49, 0.69 

14 37, 75.7 36.3, 75.8 0.5523 0.83, 2.75, 0.62 

2 37, 78.4 36.2, 78.6 0.7682 0.81, 2.80, 0.63 

46 45, 80.0 44.7, 80.4 0.2510 0.43, 1.90, 0.47 

27 46, 87.0 46.1, 87.7 0.4917 0.76, 2.96, 0.46 

16 50, 92.0 50.4, 92.3 0.2233 0.50, 2.46, 0.41 

43 54, 89.0 53.9, 89.0 0.0214 0.72, 2.88, 0.38 

41 55, 87.3 55.2, 86.8 0.2261 0.54, 2.32, 0.36 

23 57, 84.2 56.8, 84.4 0.0744 0.79, 2.71, 0.35 

9 57, 87.7 57.2, 87.1 0.4089 0.78, 2.92, 0.35 

21 65, 90.8 64.8, 91.2 0.1997 0.53, 2.24, 0.29 

26 83, 94.0 83.3, 94.2 0.1463 0.47, 2.14, 0.16 

Avg 47, 82.0 47.0, 81.8 0.1652 0.76, 2.65, 0.45 
 

Two notable regularities should be mentioned about the 
results in Table 2. The value of SYL (last ACT-R parameter 
in the genotype) represents seconds per syllable in speaking 
the answer. The model uses the ACT-R Vocal Module to 
speak the subtraction problem answers. Looking at Table 2 
from the top down we see the value of SYL decreasing as 
performance increases. The results show top performers 
speaking a syllable more quickly than the poor performers. 

In the first row, the ANS part of the genotype producing 
S1�’s fitness value is 0.83. ANS is ACT-R�’s activation noise 
parameter. The value 0.83 is higher than what is normally 
used within the ACT-R community. Modelers using a 
traditional manual fitting process would generally not assign 
a value for ANS over 0.5. 60% of the values for ANS in 
Table 2 are substantially above 0.5, and may reflect the 
results of the stress this task creates in some subjects. 

The serial subtraction task was specifically designed to 
maximize a stress response in human subjects. The PGA�’s 
non-bias randomized search of the ACT-R parameter space 
yielded high ANS values when predicting performance on 

this task. A non-bias fitting approach may be a useful 
diagnostic tool for cognitive theory development. 

Predicted Performance Distributions 
Previously presented plots of the minimum fitness value as 
the PGA evolved generations of genotypes showed 
nonmonotonic patterns and non-convergence of the 
population on a solution (Kase, forthcoming). We 
hypothesized that stochastic effects embedded in the ACT-R 
architecture caused these effects. To investigate, the 15 
genotypes producing the best fits listed in Table 2 were run 
in parallel on 200 processors. The results indicated that a 
static set of ACT-R parameters yields a distribution of 
performance predictions, not a single prediction, but that the 
distributions are quite narrow. While this is considered 
known, Figure 1 shows this difference between model and 
data is probably worse than most people believe. Absolute 
frequency histograms of the model�’s predictions for each 
individual subject�’s performance were plotted and overlaid 
in Figure 1.  
 

 

 

 

 

 

 

 

 
Figure 1: Model performance distributions (200 runs of 

each genotype in Table 2) for individual subject fits (labeled 
by subject number, top plot). Top plot, number of attempts 

(green); and bottom plot, percent correct (red). Black 
distributions represent predictions from fitting to an average 

across all subjects. 
 

The top plot in Figure 1 shows the 15 performance 
distributions produced by the model for the 15 parameter 
sets in Table 2. The distributions are green (gray) and 
labeled by subject number. The black distribution represents 
fitting to the average number of attempts across all subjects. 
Similarly, the bottom plot in Figure 1 shows the 15 
individual percent correct distributions overlaid in red (gray) 
with a black distribution representing the average percent 
correct across all subjects.  

The large standard deviations in Table 1 hinted that fitting 
to individual subjects was the best approach. The top plot of 

1400

 Kase, Ritter, & Schoelles, 2008.



 

Figure 1 confirms an individual differences approach. When 
comparing the average attempts distribution to the 15 
individual attempts distributions, the model�’s average 
attempts distribution covers only 7% of the full range of 
performance produced by the subjects. The average percent 
correct distribution is a better approximation of the range of 
performance produced by the individual subjects, but even 
here there remain substantial differences. 

ACT-R Parameter Distributions 
Upon closer examination of the PGA�’s results, the 
genotypes listed in Table 2 were only a subset of good fits 
produced by the PGA. To analyze possible similarities and 
differences across all the best-fitting solutions, genotypes 
from Table 2 were combined with other genotypes found by 
the PGA over the 200 generations with fits < 1. The results 
for the parameter values composing these genotypes are 
plotted in Figure 2. Here, subjects on the X-axis are ordered 
by number of attempts from low to high performance, and 
show the range of performance for ANS, BLC, and SYL. 
The range for each parameter across all subjects is 
represented by the vertical bar on the right-end of each plot. 
A line connects the best-fitting genotypes from Table 2. 
 

 
 

Figure 2: Distributions of ACT-R parameters values 
(ANS, BLC, SYL) for genotypes with fitness < 1.0 ordered 
by number of attempts. Small circles represent parameter 

values. A line connects parameter values associated with the 
fittest genotypes for each subject. Vertical bars at right show 

the range of parameter values across all subjects. 
 

 At the subject-level each plot indicates a distribution of 
ACT-R parameter values when a nearly perfect fit is 
achieved. The number of circles per subject equates to the 
number of nearly perfect fits produced by the PGA. For 
example, the PGA produced 9 nearly perfect fits for S16�’s 
data (listed in column 3 of Table 3). Therefore, each plot 
shows 9 circles for each parameter value for S16. Columns 
4, 5, and 6 of Table 3 list the minimum and maximum 
values for each parameter by subject.   

If the circles appear stacked, such as the case for SYL, 
this means the values for SYL were stable across genotypes 
producing nearly perfect fits. In addition to stability, the 
SYL parameter shows the expected downward trend 
previously discovered in Table 2. 

 
Table 3: Range of parameter values (ANS, BLC, SYL) 
for genotypes with fitness < 1.0 by subject number. 

 

Subject 
Human 

Data Fittest ANS  
Range 

BLC 
Range 

SYL 
Range 

1 28, 67.9  3  0.73�–0.84 2.57�–2.76 0.86�–0.88  

47 29, 62.1  2  0.66�–0.77 2.25�–2.43 0.82�–0.83 

25 31, 80.7 5 0.48�–0.79 2.25�–2.95 0.74�–0.76 

11 35, 65.7 2 0.80�–0.82 2.35�–2.49 0.68�–0.69 

14 37, 75.7 1 0.83 2.75 0.62 

2 37, 78.4 3 0.73�–0.81 2.59�–2.80 0.60�–0.63 

46 45, 80.0 2 0.43�–0.53 1.90�–2.12 0.47 

27 46, 87.0 2 0.70�–0.76 2.74�–2.96 0.46�–0.47 

16 50, 92.0 9 0.37�–0.68 2.09�–2.99 0.40�–0.42 

43 54, 89.0 6 0.32�–0.72 1.74�–2.88 0.37�–0.38 

41 55, 87.3 4 0.36�–0.60 1.86�–2.44 0.36�–0.37 

23 57, 84.2 6 0.52�–0.79 2.15�–2.71 0.34�–0.35 

9 57, 87.7 2 0.53�–0.78 2.28�–2.92 0.34�–0.35 

21 65, 90.8 5 0.28�–0.66 1.63�–2.59 0.26�–0.29 

26 83, 94.0 6 0.36�–0.52 1.75�–2.37 0.14�–0.17 

Avg 47, 82.0 4 0.25�–0.76 1.59�–2.65 0.44�–0.45 
 

The two other parameters in the genotype, ANS and BLC, 
show a distribution of values as non-stacking circles aligned 
vertically for each subject. These distributions appear to 
widen as performance increases. Noted in Table 3, for 
example, when fitting the model to S43�’s data, ANS values 
ranged from 0.32 to 0.72 (difference 0.4), BLC values 
ranged from 1.74 to 2.88 (difference 1.14), and SYL varied 
by only 0.01. This subject showed the greatest variability in 
ANS and BLC values overall. 

When considered across subjects, ANS and BLC have 
pattern similarities. The increases and decreases for the best-
fitting genotypes connected by a line mirror one another. 
For example, both ANS and BLC drop for S46, then both 
spike for S27, then both drop again for S16. Evidence of a 
pattern is not that surprising�—ANS and BLC are both 
parameters in ACT-R�’s Declarative Module used to 
calculate chunk activation. Their relationship would be 
important for the modeler to understand, for example, if a 
specific range of ANS was validated for a task, then the 
corresponding range for BLC could be estimated.  

Parameter Space Visualizations 
The distributions of parameter values for ANS and BLC 
producing nearly perfect fits were an unexpected finding A 
3-D visualization method called slice planes was used to 
investigate the situation further (Figure 3). 
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Figure 3: 3-D plots using slice planes to visualize the parametric space when fitting the model to S1�’s performance (left-
side plots) and S26�’s performance (right-side plots). Fitness scale is shown at the top.  
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Two preliminary data volumes were constructed from 
coarse-grained grids of 4913 data points per volume. A data 
point is a parameter set and associated average fitness value 
calculated across 20 model runs�—totaling 98,260 model 
runs consuming approximately 30 CPU hours per volume. 
The data is scalar with XYZ representing ANS, BLC and 
SYL, respectively. Fitness is the 4th dimension or V 
represented by a color bar scale from black (fitness = 0, 
perfect fit) to white (fitness > 50).  

Figure 3 shows the parametric space when fitting to S1 
(worst performer, left-column plots) and S26 (best 
performer, right-column plots). The slice planes are 
positioned and perspectives rotated to illuminate locations 
of nearly perfect fit within the parameter space.  

In S1�’s plots, the ANS and BLC slice planes remain at a 
constant position, while the slice plane for SYL is initially 
positioned at 0.9 in the top plot and then incrementally 
lowered by 0.1 in the second and third plots. For S26�’s 
plots, the SYL slice plane remains at a constant position of 
0.2; ANS is incremented by 0.1 from 0.35 to 0.55; and BLC 
is positioned from 2.9 to 1.9 then back to 2.9. 

Figure 3 shows the small and scattered range of useful 
values�—multiple data points resulting in nearly perfect 
model-to-data fits for both subjects (black squares). S1�’s 
visualizations show a band-like pattern of fair to good fits 
perforated by several nearly perfect fits. In contrast, the 
nearly perfect fits for S26 are massed in an area near the 
upper constraint of BLC and lower constraint of SYL.  

As noted in Table 3, the PGA found twice as many nearly 
perfect fits for S26 then for S1. The limitations of this 
research, one data set and one model, restrict interpretative 
insights gained by the visualizations. Different patterns of 
nearly perfect fits might indicate types of strategies 
attempted by subjects performing the task while under 
different levels of stress. 

Conclusion 
Why the �‘expedition�’ characterization of this research? 

An alternative approach to cognitive model fitting leads to a 
succession of unexpected results, interesting questions, and 
possible atypical analyses. What we have learned: (1) When 
variability in the data makes fitting to mean performance 
difficult and mean performance does not resemble any 
particular subject�’s performance, individual data fitting is a 
viable approach, (2) Non-bias fits produced by optimization 
algorithms mitigate the bias present in human (and modeler) 
problem solving, (3) Stochasticity detected in the 
architecture and model is an example of how multiple 
model runs help in understanding the distribution of model 
predictions, (4) Finding sets of good fits instead of only one 
may infer an architectural issue, flawed model or 
architecture, or alternative strategies for doing the task, (5) 
Visualizations of the prediction landscape are useful in 
understanding a cognitive architecture and how different 
combinations of parameters effect a model�’s performance.  
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