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Summary

Soar is a unified theory of cognition, and a cognitive
architecture, realized as a production system, a
type of expert system. It is designed to model
human behaviour on multiple levels.

UNIFYING COMPUTATIONAL
MECHANISMS TO FORM A THEORY OF
COGNITION

Soar is a unified theory of cognition (UTC) realized
as a computer program. It can be considered in
three mutually complementary ways. First, it can
be seen as a theory of cognition realized as a set of
principles and constraints on cognitive processing:
a cognitive architecture (Newell, 1990). In this re-
spect, Soar provides a conceptual framework for
creating models of how people perform tasks, typ-
ically assisted by the corresponding computer pro-
gram. In this view Soar can be considered as an
integrated architecture for knowledge-based prob-
lem solving, learning, and interacting with external
environments. It is thus similar to other unified
theories in psychology, such as ACT-R, EPIC, PSI,
and CAPS. (See Skill Acquisition: Models; Learn-
ing and Memory, Models of)

Second, Soar can be seen as the computer pro-
gram that realizes a particular theory of cognition.
There are debates as to whether and how the theory
is different from the computer program, but it is
fair to say that they are at least highly related. It is
generally acknowledged that the program imple-
ments the theory, and also that there are commit-
ments that are not in the theory but that must be
made in the program to create a running system. In
this way it is similar to other cognitive theories
realized as computer programs, such as ACT-R,
and connectionist models of specific tasks realized
as programs.

Third, Soar can be seen simply as a specialized
Al programming language. In this view, what
matters is only that it performs the task in an intelli-
gent way. In this respect it is similar to expert
system tools such as OPS5 and CLIPS. (See Expert
Systems)

The deliberate combination of these approaches
to understand intelligence has been fruitful. Re-
searchers interested in creating cognitive models
have used Soar primarily to model human behav-
iour in detail, to suggest new uses of existing
mechanisms to create behaviour, and to propose
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improvements to the Soar programming interface.
Researchers interested in creating Al programs
have contributed to the efficiency, functionality,
and generality of Soar as a programming language
and provided information on the functional re-
quirements of working systems.

SOAR AS A UNIFIED THEORY OF
COGNITION

Soar was proposed by Newell (1990) as a candidate
UTC. Newell presents a full description of the
virtues of unification. Three of the most important
are: coherence in theorizing (‘it is one mind that
minds it all’); bringing to bear multiple constraints
from empirical data; and reducing the number of
theoretical degrees of freedom. (See Unified Theor-
ies of Cognition)

Being a UTC does not mean that there is only a
single mechanism for each task or behaviour, al-
though in most places in Soar there is only one. It
does mean that the set of unifying principles and
mechanisms must work together to support all of
cognition: there is not a big switch or a set of dis-
joint modules (Newell, 1992). ACT-R is another
unified theory, although the set of mechanisms it
proposes to account for all of human behaviour is
longer. (See ACT)

Unified theories represent a grand vision. None
of them can yet provide even a verbal explanation
for all of human behavior in terms of architectural
mechanisms, let alone provide implemented
models, and few have yet covered more than a
small set of regularities. This name may even be a
misnomer, for they are attempting to unify all of
behavior, not just cognition. Their intention is to
cover larger amounts of data than have been
covered before, and to bind the different areas of
cognition together through a common set of mech-
anisms. A common and unproductive criticism is
that an architecture is wrong because all areas are
not yet covered. All theories suffer from this limita-
tion. A much more valid and valuable criticism
would be that an important aspect of a given area
cannot be accounted for by the current architecture.

GOAL-DIRECTED SEARCH IN
HIERARCHICAL PROBLEM SPACES
BASED ON PRODUCTION RULES

Soar — as a theory, as a cognitive modeling lan-
guage, and as an Al programming language —
incorporates problem spaces as a single framework
for all tasks and subtasks to be solved, production
rules as the single representation of permanent

knowledge, objects with attributes and values as
the single representation of temporary knowledge,
automatic subgoaling as the single mechanism for
generating goals, and chunking as the single learn-
ing mechanism. Specifically, Soar provides a
general scheme for control — deciding what to do
next —that is hypothesized to apply to all cognition.
These mechanisms can be used in different ways,
however. For example, chunking can be used to
learn both declarative and procedural knowledge.

Soar can be viewed at three levels. At the highest
level, it approximates a knowledge-level system
(Newell, 1982). This is an abstract level where a
system is described in terms of its knowledge, and
which is only approximated by any realized
system, including Soar. The two lower levels are
the problem space level and the symbol level.
These work together to support learning.

The Problem Space Level

Figure 1 illustrates the two lower levels. These are
similar to Marr’s lower two level of analysis. The
higher of these levels is the problem space level,
where behaviour is seen as occurring in a problem
space made up of goals, problem spaces, states, and
operators. Note that these terms refer to specialized
constructs in Soar, which are related to, but not
strictly equivalent to, their usual meanings in
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Find-canoe
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Chunking

Y

Long-term recognition memory
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Figure 1. Structures in Soar.
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cognitive science. (See Computer Modeling of Cog-
nition: Levels of Analysis)

A problem space is a set of representations for
a problem, the structures for states, and all the
operators relevant to those representations. The
operators may be implicit and shared with other
spaces. There can be several problem spaces active
at any one time. A state may lack some required
knowledge and have a state created to help it find
the knowledge it needs, and similarly be providing
knowledge itself. In figure 1 this state relationship
is shown in the states S;, S,, and S3;. The main
reason for organizing knowledge into problem
spaces is that it reduces the search for information.
This approach has also been used successfully as a
software design technique.

While solving a problem there is a current state
structure that specifies the situation of the problem
solver in each problem space. For example, in a
blocks world, the state might be ‘block A is on top
of block B, and block B is on the table’.

Fluent, expert behavior consists of a repeated
cycle on the problem space level in which an oper-
ator is selected and is applied to the current state to
produce a new (modified) current state. The pro-
cess of choosing and applying a new operator (or
creating a new state) is called a decision cycle. So in
the example above, we could have applied an op-
erator to move block A onto the table, after which
the current state would include the fact that block A
and block B are both on the table.

The Symbol Level

The problem space level is realized by a lower
level, a symbol level. At this level of analysis
long-term recognition memory, realized as produc-
tion rules, is compared to the current set of con-
texts. Rules (shown as P; and P, in figure 1) will
have their conditions (C;, C,, etc.) matched to the
current context. Their actions (A, A,, etc.) will act
on the problem space level to generate operators,
propose how to choose between operators, imple-
ment operators, or augment the state with known
inferences. Each cycle of rule application is called
an elaboration cycle. There may be several elabor-
ation cycles in each decision cycle. All rules whose
conditions are satisfied are allowed to apply. If they
make conflicting suggestions, the architecture sorts
them out using an impasse (see below).

The rules are structured to match objects in the
architecture. The rules can test the contents of states,
and test for operators by name and by their contents.
The rules” outputs are constrained to be in terms
of the problem space structures. These constraints

on the representation of the rules are part of
what makes the system a cognitive architecture
and not simply a free-form programming language.

Soar uses a modified RETE algorithm to apply
the production rules. The time this algorithm takes
to match a rule set is proportional to the number
of memory elements that change, not the number of
rules. This leads to very little slowdown as larger
rule sets are used (but requires more computer
memory). The largest systems created have had
over a million rules with little or no slow down
with additional rules (Doorenbos, 1995; Doorenbos
et al., 1992).

Learning and Chunking

But what happens if something prevents the pro-
cess of operator application from continuing
smoothly? For example, perhaps the current know-
ledge in the Soar model cannot propose any oper-
ators to apply to the current state. Or the model
may know of several applicable operators, but has
no knowledge of how to choose between them. In
such cases, the Soar model encounters an impasse.
There is a limited number of types of impasse de-
fined by the architecture, which primarily arise
through a lack of knowledge (inability to apply or
select an operator) or through inconsistent know-
ledge (conflict among operator proposals).

When Soar encounters an impasse in context
level 1, it sets up a subcontext, a subgoal, at level
2, which has associated with it a new state,
which may end up with its own problem space
and operators. Note that the operators at level 2
could well depend upon the context at level 1.
The goal of the level 2 context is to find knowledge
sufficient to resolve the higher impasse, allowing
processing to resume there. For example, we may
not have been able to choose between two oper-
ators, so the level 2 subgoal may simply try one
operator to see if it solves the problem, and if not,
try the other operator.

The processing at level 2 might itself encounter
an impasse, set up a subgoal at level 3, and so on.
The problem solver usually has a stack of such
levels, each generated by an impasse in the level
above. Each level can have its own state, problem
space, and operators.

In Figure 1, there were several operators pro-
posed for the pond, including canoeing and fish-
ing, and no knowledge was available to choose
between them, so a new context was created to
allow the architecture to consider this problem ex-
plicitly in a selection problem space, through what
is called an ‘operator-tie impasse’. Knowledge was
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available in that space, which suggested testing the
canoeing operator and seeing how it would play
out. The operator Eval—-canoe was attempted,
but nothing happened, so another impasse (an
‘operator-no-change’ impasse) was declared and
an operator could be proposed in an evaluation
problem space.

Whenever processing in the subgoal generates
results that allow a higher level to continue, for
example, if the operator Find-canoe allows
Eval—-canoe to continue, the architecture no-
tices this, and automatically generates a new rule
(also called a chunk) to summarize this problem
solving. This rule’s conditions are based on back-
tracking through the problem solving to find out
what aspects of the initial situation were used, and
the rule’s actions are the output of Find-canoe
that removed the higher-level impasse. In this case
it would probably be a change to the Eval-
canoe operator or to its state.

The next time such a condition occurs, the rule
will match and update the operator or state, and
the impasse will be avoided. This is the basic learn-
ing mechanism in Soar. This approach provides a
strong theory of when and how learning and trans-
fer will occur.

Chunking has been used to create a wide range of
higher-level learning - including explanation-
based learning, declarative learning, instruction
taking, and proceduralization — by varying the type
of impasse and the knowledge used to resolve it.

THE HISTORY OF SOAR

The intellectual origins of Soar can be found in the
seminal work of Newell and Simon on human
problem solving. This builds upon work on pro-
duction system architectures in the 1970s onwards,
particularly Newell’s work on the problem space as
a fundamental category of cognition (Newell,
1980). Soar as a unified theory of cognition has
some of its theoretical roots in the Model Human
Processor (Card et al., 1983).

The first implementation of Soar was built by
Laird, modifying Rosenbloom’s XAPS architecture.
Impasses were introduced in Soar 2, a reimplemen-
tation of Soar in OPS5, which allowed rules to fire
in parallel and included the problem space decision
mechanism. The original motivation was both
functional (to create an architecture that could sup-
port problem solving using many different weak
methods arising from the knowledge that was
available) and structural (to create an architecture
that integrated problem spaces and production
systems). ‘SOAR’ was originally an acronym for

‘state operator and result’, but it is no longer recog-
nised as being an acronym because the theory is
more complex.

A major watershed in the development of Soar
was Newell’s William James lectures at Harvard
(Newell, 1990). These lectures defined what a uni-
fied theory in psychology should include, pro-
posed Soar as a candidate unified theory, and
extended the Soar theory, providing some detailed
examples. (See Newell, Allen)

The recent development of Soar has been driven
by applications. Soar models have been applied to
real-time domains such as flying simulated aircraft
(Jones et al., 1999). Analyses of running models
showed that the state and problem space in the
original Soar theory were not being used as had
been initially imagined: in most cases they did not
vary and were simply reiterations of the goal. Later
versions of Soar have dropped problem spaces and
states as explicit reserved structures but allowed
the modeller to represent them in the goal. This
has led to faster systems that allow several models
on a single computer to interact in real time, per-
forming complex tasks. Because these context slots
were not being used by models, their removal did
not lead to changes in behavior.

Architectural work on Soar is currently focused on
improving its interface, introducing new learning
algorithms built upon the chunking mechanisms,
tying Soar to external worlds (including behaviour
moderators like stress), and the implications of
interaction for problem solving and learning. Future
work could include reviving the Neuro-Soar project
(Cho et al., 1991). This project showed that it
was possible to realize the symbol level of Soar
with a connectionist network, although modelling
so many theoretical levels made it slow.

MATCHING HUMAN PERFORMANCE IN
DIVERSE DOMAINS

One of the strengths of Soar is that it predicts
the action sequences and times to perform tasks
(Newell, 1990). The parameters chosen by Newell
have been gradually refined. The Soar philosophy
has been to retain the same constraints from prob-
lem to problem, rather than having numerous par-
ameters that can be adjusted for a specific task or
data set.

For cognitive modelling, Soar is most effective at
modelling deliberate cognitive human behavior
at timescales greater than 50 ms. Published models
include human—computer interaction tasks, typing,
arithmetic, categorization, video game playing (i.e.,
rapid interaction), natural language understanding,
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concept acquisition, learning by instruction, verbal
reasoning, driving, job shop scheduling, and team-
work.

Soar has also been used for modelling learning in
many of these tasks, many of which involve inter-
action with external environments. Soar does not
yet have a standard model for low-level perception
or motor control, but two systems that could be
integrated, EPIC-Soar (Chong and Laird, 1997)
and Sim-eyes and Sim-hands (Ritter et al., 2000),
have been created. Learning adds significant com-
plexity to the structure of the model, however. (See
Learning Rules and Productions)

One of the signature data regularities modeled in
Soar is the learning curve. The learning curve pre-
dicts that the time to do a task decreases according
to a power law (or perhaps an exponential decay).
Soar’s prediction of the power law of practice for a
task arises from how models in Soar do the task and
what they learn.

The first, and probably the simplest, way in
which the power law of learning has been modelled
in Soar is for the Seibel task. This simple task is to
push the buttons on a panel corresponding to lights
that are on. There are ten lights, therefore 1023
possible patterns of lights where at least one light
is on. The model proposes two operators to do a left
and a right subregion. If these are not individual
lights, then an impasse occurs, and each subregion
gets two operators. This continues until a single
light is a subregion. The model can then return a
chunk that does both subregions, initially, two
lights. Early trials generate two-light patterns that
occur often and are useful. Later trials can build
larger patterns, with more lights, that occur less
often but save more time.

The Seibel model was one of the first learning
models in Soar, and represents probably the sim-
plest approach to learning in Soar. It does not rep-
resent more complex and accurate learning
methods. Current models include learning by in-
struction, learning by following others, modeling
transfer between tasks, and learning category
knowledge. We are now at the point where, if we
can model performance on a task in Soar, we expect
to be able to model learning. Nearly all of the cog-
nitive models in Soar are models that learn, and a
majority of these have been compared with data.

SOAR AS AN EXPERT SYSTEM
DEVELOPMENT ENVIRONMENT

Soar has also been used to create a variety of classi-
fication expert systems, that is, systems that classify
situations. These including lift planning, produc-

tion scheduling, diagnosis, robotic control, and
computer configuration. It has been used in the
Sisyphus knowledge elicitation comparisons.

Perhaps the greatest success for Soar expert
systems has been in a procedural domain, flying
simulated aircraft in a simulated hostile military
environment. In one experiment Soar flew all of
the US aircraft in an international 48-hour simula-
tion exercise (Jones ef al., 1999). The simulated
pilots talked with each other and with ground con-
trol, and carried out over 700 sorties with up to 100
planes in the air at once.

For building artificial intelligence (Al) and expert
systems Soar’s strengths are in: integrating know-
ledge; planning; the ability to react quickly by
modifying its internal state or changing its goal
stack; search; and learning within a very efficient
architecture. It also has the ability, used in a model
that plays Quake™, to create a state mirroring its
opponent’s state, and consider what the opponent
will do by considering what it would do itself in the
same situation.

CHALLENGES FOR SOAR AND OTHER
UTCs

Like any unified theory of cognition realized as
a program, Soar faces major challenges. Work con-
tinues on applying Soar to a wider range of tasks
and including learning and interaction in these
models. Meanwhile, usability is becoming increas-
ingly important as Soar moves out of the academic
world into the world at large.

Soar has been developed and used by a commu-
nity of researchers. Keeping a group of up to 100
researchers together intellectually has been diffi-
cult. Explicit mechanisms are necessary, such as
repositories of papers and programs, regular meet-
ings, mailing lists, frequently asked question lists
(FAQs), and websites.

SUMMARY

There are a number of relatively unique capabilities
that arise out of the combination of the structures
and mechanisms in Soar. First, problem solving
and learning are tightly intertwined: chunking
depends on the problem solving, and most prob-
lem solving would not work without chunking.
Secondly, interruptibility is available as a core
aspect of behaviour. Rules are matched against
the whole context stack. Processing can thus pro-
ceed in parallel on several levels. If the situation
changes, rules can fire quickly, suggesting new
operators at the level most appropriate for dealing
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with the change. Thirdly, it is possible to create
large rule systems because they can be organized
in problem spaces; and the architecture makes
them fast to build and to run. Fourthly, planning
can be integrated with reacting as well as with
dynamic decomposition of tasks.

It takes effort to learn Soar. More practice is
needed than for other, simpler, systems. Those pro-
jects that have used Soar successfully have often
been able to solve problems that were previously
unsolvable or unmodellable, but not without hard
work on the part of the modellers.

Soar is, perhaps uniquely, appropriate for creat-
ing large cognitive models or expert systems, or for
projects where learning or interaction (or both) are
important.
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