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Abstract 

A human subject experiment was conducted to investigate 
caffeine’s effect on appraisal and performance of a mental 
serial subtraction task. Serial subtraction performance data 
was collected from three treatment groups: placebo, 200, and 
400 mg caffeine. The data were analyzed by caffeine treat-
ment group and how subjects appraised the task (as 
challenging or threatening).  A cognitive model of the serial 
subtraction task was developed.  The model was fit to the 
human performance data using a parallel genetic algorithm. 
How the model’s parameters change to fit the data suggest 
how cognition changes due to caffeine and appraisal.  Over-
all, the cognitive modeling and optimization results suggest 
that the speed of vocalization varies the most along with 
changes to declarative memory.  This approach provides a 
way to compute how cognitive mechanisms change due to 
moderators.   

 Introduction 

How is cognition preformed?  Cognitive architectures are 
an approach to answer this question.  How does cognition 
change with moderators like stress?  This is a more diffi-
cult question that has kept many scientists and engineers 
busy.   
 In this paper we present a large-scale approach that 
starts to provide a solution to the question of how cognition 
changes. This approach uses methods from physiological 
psychology, cognitive architectures, and parallel genetic 
algorithms.  We are able to provide an initial answer to 
how cognition changes due to stress in a task and due to 
caffeine consumed as a potential mitigator of stress.  

                                     
Copyright © 2009, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 
 

 We first describe the task that the subjects and model 
performed, which is a simple subtraction task.  We then 
describe the model of this task, followed by the study 
methodology, the results, and a brief discussion of the 
results.  We then describe how we fit the model to the data 
by varying three parameters of the cognitive architecture.  
How the parameters are modified give some indication of 
how performance was modified by stress and by caffeine.  
This approach has flaws and further opportunities.  These 
are taken up after all the parts are explained.   

Serial Subtraction Task 

The task we used to study stress is the serial subtraction 
task.  A brief summary of it is shown in Figure 1. It is part 
of the Trier Social Stressor Task (TSST), which starts with 
a public speaking task about an embarrassing episode or 
interviewing for a job (Kirschbaum, Pirke, and 
Hellhammer 1993).  This task has been used quite often in 
physiology studies to cause stress in subjects, which can 
then be measured in a variety of ways.  Typically, the 
subjects’ performance on the task is not recorded—the task 
is solely used to cause changes in physiology not to give 
insights about cognition and stress.  
 

 
Figure 1.  The serial subtraction task and the starting numbers.  



 The task is designed to cause physiological stress, and it 
routinely does as measured by changes in heart rate, blood 
pressure, and stress hormone levels.  Before the task begins 
the experimenter explains that the subject’s performance is 
going to be rated by a review panel during the lab session 
or is going to be recorded and analyzed. After the task is 
explained to the subject, a task appraisal questionnaire is 
completed, and the subject begins performing the task with 
no visual or paper clues. It is thought that this anticipation 
period, for some subjects, increases anxiety and worry 
about poor performance on the upcoming task.  
 Subjects sit in a chair directly in front and near the 
experimenter who is holding a time keeping device and 
clipboard of the correct subtraction answers that she checks 
off as the subject performs the task. Before the task begins 
the experimenter emphasizes that the task should be 
preformed as quickly and as accurately as possible.  Often, 
and in our case, the experimenter wears a white lab coat to 
increase stress.  An experimenter tells the subject the 
starting number; from then on, the subject speaks the 
answer to each subtraction problem. 
 When an incorrect answer was given, the subject is told 
to “Start over at <the last correct number>”.  At two 
minutes into each 4-minute session, subjects are told that 
“two minutes remain, you need to go faster”. This prompt 
enhances the time-pressure component of the task.  
 With this task in hand, we now describe a model to 
perform this task.  

Modeling Serial Subtraction 

We created a simple model of this task.  The model 
provides a description of how the task is performed, and 
will provide us with a theory of how cognition and cogni-
tive mechanisms change to give rise to performance. In this 
model, theory about how mental arithmetic is performed 
was combined with observations gathered during a previ-
ous serial subtraction study (Ritter, Bennett, and Klein 
2006) to create a cognitive model of the serial subtraction 
task.   
 The ACT-R cognitive architecture (J. R. Anderson 
2007) was chosen for several reasons: it provides a 
parameter-driven subsymbolic level of processing; it 
permits the parallel execution of the verbal system with the 
control and memory systems, and it has been used for other 
models of addition and subtraction developed by other 
researchers. Figure 2 shows the components of the ACT-R 
architecture that are used.   
 The serial subtraction model performs a block of 
subtracting by 7s or 13s in a similar manner to that of the 
human subjects. The model’s declarative knowledge 
consists of approximately 650 arithmetic facts and goal-
related information. The model’s procedural knowledge is 
made up of 24 production rules that allow for retrieval of 
subtraction and comparison facts necessary to produce an 
appropriate answer. The model performs subtractions using 
a column-by-column strategy.   
 The model runs under ACT-R 6.0 and utilizes the imagi-
nal module and buffer. The imaginal buffer implements a 

problem representation capability. In the serial subtraction 
model the imaginal buffer holds the current 4-digit number 
being operated on (the minuend) and the number being 
subtracted (the subtrahend). The goal module and buffer 
implement control of task execution by manipulation of a 
state slot. ACT-R’s vocal module and buffer verbalize the 
answer to each subtraction problem as the subjects do. 
 The model starts with the main goal to perform a 
subtraction and a borrow goal to perform the borrow 
operation when needed. Both goal chunks types contain a 
state slot, the current column indicator, and the current 
subtrahend. The imaginal buffer maintains the current 
problem. This buffer is updated as the subtraction is 
performed. The model begins with an integer minuend of 
4-digits. All numbers in the model are chunks of type 
integer with a slot that holds the number. The model also 
contains subtraction and addition fact chunks whose slots 
are the integer chunks described above. This representation 
of the integers and arithmetic facts has been used in other 
ACT-R arithmetic models. 
 The model determines if a borrow operation is required 
by trying to retrieve a comparison fact that has two slots, a 
greater slot containing the minuend and a lesser slot 
containing the subtrahend. If the fact is successfully 
retrieved then no borrow is necessary; otherwise a borrow 
subgoal is created and executed. Borrowing is performed 
by retrieving the addition fact that represents adding ten to 
the minuend. The subtraction fact with the larger minuend 
is retrieved. The model then moves left one column by 
retrieving a next-column fact using the current column 
value as a cue. If this retrieval fails, there are no more 
columns so the borrow and the subgoal return back to the 
main task goal. If there is a next column and its value is not 
0 than 1 is subtracted from it by retrieval of a subtraction 
fact. If the value is 0 then the problem is rewritten in the 
imaginal buffer with a 9 and the model moves to the next 
column and repeats the steps discussed above, returning to 
the main task when there are no more columns. The model 
outputs the answer by speaking the 4-digit result. The 
model has two output strategies. For this paper the data 
reported are for the calc-and-speak strategy where the 
model speaks the answer in parallel with the calculation 
described above. If the answer is incorrect, the problem is 
reset to the last correct answer. If the answer is correct, the 
main problem task is rewritten in the imaginal buffer. 

 

Figure 2.  The components of the ACT-R architecture used by the 

serial subtraction model.  



 After the model has performed a block of subtractions 
the number of attempted subtraction problems and percent 
correct, are recorded. The model’s performance can be 
adjusted by varying the values of architectural parameters 
associated with specific modules and buffers, and 
subsymbolic processes within the architecture. 

Experimental Method 

Subjects 
As part of a larger project, human subject data was 
collected to study the effects of stress and caffeine on 
cardiovascular health.  A mixed experimental design was 
conducted with 45 healthy men 18-30 years of age (Klein 
et al. 2006). (Men are typically used in these types of 
studies because we also took additional physiological 
measures and male systems are simpler.)   

Design and Procedure 
The full protocol is shown in Figure 3.  After obtaining 
informed consent, and confirming that subjects did not 
have any conditions that would interact with stress and 
caffeine, all subjects filled out some questionnaires and 
were asked to perform a series of three cognitive tasks. A 
baseline was taken for several physiological measures 
(hormones from saliva, heart rate, and blood pressure).  
Preliminary results from these measures are reported else-
where (Bennett et al. 2006; Klein et al. 2006; Whetzel, 
Ritter, and Klein 2006). 
 Subjects individually performed a simple reaction time 
(RT) and a working memory (WM) task taking 15 minutes 
to complete. Then subjects were administered one of three 
doses of caffeine: none (placebo), 200 mg caffeine 
(equivalent to 1-2, 8 oz cups of coffee), or 400 mg caffeine 
(equivalent to 3-4, 8 oz cups of coffee). After allowing 
absorption time, a 20-minute stress session of the mental 
arithmetic (serial subtraction) portion of the TSST was 
performed. Following completion of this stressor, subjects 
again were asked to complete the RT and WM tasks. 
Cognitive performance was determined by calculating 
accuracy and response time scores. 
 The serial subtraction task utilized in the experiment 
consisted of four 4-minute blocks of mentally subtracting 
by 7s and 13s from 4-digit starting numbers.  Figure 1 
noted the four starting numbers used to begin the four 
blocks of subtraction during the experiment. 

Task Appraisal Analysis 
Before and after the serial subtraction stress session, 
subjects completed pre- and post-task appraisals based on 
Lazarus and Folkman’s (1984) theory of stress and coping. 
Each subject was asked five questions orally: two focused 
on the subject’s resources or reserves to deal with the serial 
subtraction task and three focused on the subject’s percep-
tion as to how stressful the task would be.  We use here the 
post-task appraisals because this group did not find the task 
threatening before they experienced the task.  (Previous 

work typically uses pre-task appraisals, and can split 
subjects because the full task includes a public speaking 
component that is more threatening.  Also, we used raw 
scores here rather than simply taking a median split to 
group subjects into two groups.)  

 

Figure 3.  An illustration of the four blocks of the serial 

subtraction task as in the experiment.  

 
 After correcting for the imbalance in questions, a ratio of 
perceived stress to perceived coping resources was created 
(total task requirements score / total coping ability score). 
For example, if a subject’s total appraisal score was 1 or 
less, their perceived stress was less than or equal to their 
perceived ability to cope, which equated to a challenge 
condition. If a subject’s appraisal score was greater than 1, 
their perceived stress was greater than their perceived 
ability to cope, which equated to a threat condition.  
 Each caffeine treatment group had 15 subjects. Table 1 
shows the distribution of subjects into appraisal groups.  
The placebo group had approximately the same number of 
subjects in each appraisal condition (7 challenge, 8 threat). 
The 200 mg caffeine group had twice as many challenged 
subjects as threatened subjects (10 challenge, 5 threat). The 
400 mg caffeine group contained only 2 challenged 
subjects with the remainder (13) subjects reporting a 
threatening appraisal.  This is consistent with previous 
results that has consistently shown an increase in self-
appraised alertness (e.g., Yu et al. 1991). 
 
Table 1.  Subjects’ appraisals by caffeine condition.  

 
Caffeine Treatment 1-2  8 oz 

cups of 

coffee 

3-4  8 oz 

cups of 

coffee 

Number of subjects Placebo 200 mg 400 mg 

Challenge 7 10 2 

Threat 8 5 13 

 
 
 



Results and Discussion 

For this investigation, the serial subtraction performance 
data from the placebo group (PLAC), the 200 mg caffeine 
group (LoCAF), and the 400 mg caffeine group (HiCAF), 
were analyzed by average across treatment group and by 
appraisal condition. The performance statistics of primary 
interest were number of attempted subtraction problems 
and percentage correct. The data are shown in Table 2 
where each pair of values represents number of attempts 
and percent correct. The results discussed in this paper 
apply to data from the first block of subtracting by 7s. 
 
Table 2.  Human performance (average number of attempts and 

percent correct) by caffeine treatment group (each N=15) and 

appraisal condition (challenge, threat). 

 

Treatment Average Challenge Threat 

PLAC 47.3,    81% 50.7,    83% 40.4,   78% 

LoCAF 59.1,   86% 62.4,    88% 37.5,    75% 

HiCAF 45.7,    79% 51.6,    83% 38.9,    75% 

 
 For all treatment groups the challenge condition showed 
the best performance in both number of attempts and 
percent correct across caffeine treatments. The threat 
condition showed the worst performance.  Previous work 
has only found that there are fewer attempts when threat-
ened, not that there is also lower percent correct (Tomaka, 
Blascovich, Kelsey, and Leitten 1993).  
 Performance differences between the challenge and 
threat conditions were most pronounced in the LoCAF 
group with an increase of nearly 25 more attempted 
subtraction problems and a 13.5% increase in subtraction 
accuracy by challenged subjects over threatened subjects. 
For the HiCAF group the challenge and threat condition 
differences were less than LoCAF but still substantial: 13 
more attempted problems and a 7.7% increase in subtrac-
tion accuracy. Differences between the challenge and 
threat condition were least visible in the PLAC group, 10 
more attempted problems and only a 5.4% increase in 
accuracy.  
 Figure 4 better illustrates these performance differences 
with the treatment groups labeled along the x-axis and the 
plot subdivided into three sections: averages across treat-
ment groups (not by appraisal condition) in the leftmost 
section, and averages across treatment groups subdivided 
by appraisal condition in the center (challenge) and right-
most sections (threat).  
 The plot visualizes several interesting trends; some 
supported by existing caffeine and cognition research and 
others not. In the average across treatments plot (leftmost 
section), the performance of the HiCAF group drops below 
that of PLAC for both performance statistics. This supports 
findings that large doses of caffeine are occasionally asso-
ciated with anxiety and disrupt performance (e.g., 
Haishman and Henningfield 1992; Wesensten, Belenky, 

and Kautz 2002). Whether a 400 mg dose is considered 
‘large’ may be in question as some studies administered up 
to 800 mg doses (McLellan et al. 2007). Generally, 100 to 
300 mg doses are categorized as ‘low’ dosages because 50-
300 mg of caffeine is available in a number of forms 
including tablets, chewing gum, a wide variety of 
beverages, and some food products.  
 In the challenge condition (middle section), HiCAF 
performance does not drop below PLAC, but is approxi-
mately equivalent or slightly higher. In both the average 
across treatments and the challenge condition, LoCAF 
performance is well above that of PLAC. This is also 
supported in previous research that low doses of caffeine 
tend to increase performance (Amendola, Gabrieli, and 
Lieberman 1998; Smith, Clark, and Gallagher 1999). In 
both these cases, the across treatments and challenge plots, 
the effects of caffeine take on characteristics related to 
level of arousal studies (e.g., K. J. Anderson and Revelle 
1982) and appear to follow the Yerkes-Dodson (1908) law 
that postulates that the relationship between arousal and 
performance follows an inverted U-shape curve. 
 There is no supporting research for the performance 
trends visible under the threat condition (right section). 
Threatened subjects self-reported stress and lack of coping 
skills to adequately perform the serial subtraction task.  
The threat plot shows performance decreases from PLAC 
to LoCAF (instead of increases as observed in the other 
sections of the plot) with HiCAF only very slightly higher 
than LoCAF (+1.4 attempts, and +0.3% correct). In this 
case, the U-shape is not inverted, but actually very slightly 
U-shaped. 
 Thus, we see that task appraisal correlates with perform-
ance.  This might not be surprising given that the appraisal 
was taken after performance, but similar appraisal meas-
ures taken before also correlate, including in this task, and 
we know that self appraisal scores are often pretty gener-
ous in general (Dunning, Johnson, Ehrlinger, and Kruger 
2003). 
 We also can see that caffeine dose generally provided an 
inverted U-shaped curve, with moderate caffeine providing 
the greatest number of attempts and the highest percent 
correct.  This result was not obtained for subjects making a 
threatened appraisal.   
 These results provide differences that are interesting.  
The next step is to find out what changes to cognition 
could give rise to such differences. 

Optimizing to Human Data 

To understand how cognition changes for these groups, we 
can adjust theoretically motivated parameters in the archi-
tecture, and treat the adjustments as a description of how 
cognition changed.  If a pattern of parameter changes that 
lead to better correspondences are found, they suggest how 
cognition changes.  This process in other areas is some-
times called docking, which is an alignment procedure for 
comparing models (Burton, 1998; Louie et al. 2003). 



 

Figure 4.  Comparing human performance differences in number of attempts and percent correct by treatment group (x-axis) and appraisal 

condition: treatment groups not accounting for appraisal (leftmost section), and averages across treatment groups divided by appraisal 

condition, challenge (middle section) and threat (rightmost section). 

 This section begins by discussing the architectural 
parameters selected for adjusting the model’s performance 
to simulate the human data. This process of fitting the 
cognitive model to human data is a form of optimization. 
The model fitting approach is briefly described in the 
second part of the section. The fitting results, accompanied 
by interpretations of best fitting parameter values, is 
discussed at the end of the section. 

Architectural Parameters 
Several architectural parameters in ACT-R appeared 

important in performing serial subtraction.  We chose what 

we thought were the first three to explore. The SYL 

parameter was chosen for optimization because vocaliza-

tion of the answer is the most time consuming aspect of 

this task. The BLC and ANS parameters were chosen 

because the task is memory intensive. Other memory 

parameters could have been chosen and ongoing work is 

exploring the fitting of other parameters. We would, of 

course, like to explore a wider set.  The parameters used in 

this study were: seconds-per-syllable, the declarative 

knowledge’ base level constant, and the declarative 

memory’s activation noise.  

The rate the model speaks is controlled by the seconds-

per-syllable parameter (SYL). The ACT-R default timing 

for speech is 0.15 seconds per assumed syllable based on 

the length of the text string to speak. There is a default of 

three characters per syllable controlled by the characters-

per-syllable parameter. The seconds-per-syllable and 

characters-per-syllable parameters control subsymbolic 

processes in ACT-R’s vocal module. The vocal module 

gives ACT-R a rudimentary ability to speak. It is not 

designed to provide a sophisticated simulation of human 

speech production, but to allow ACT-R to speak words and 

short phrases for simulating verbal responses in experi-

ments such as the answers to the subtraction problems. 
 The other two parameters affect declarative knowledge 
access: the base level constant (BLC), and the activation 
noise parameter (ANS). The BLC parameter and a decay 
parameter affect declarative memory retrieval and retrieval 

time. The ANS value affects variance in retrieving 
declarative information and error rate for retrievals in the 
model. This instantaneous noise value can also represent 
variance from trial to trial.  Other parameters, such as base 
level learning, decay, the characters-per-syllable parame-
ters were built into the model as modifiable but were left 
fixed at their default values for this study. The search space 
for the model optimization was defined by the parameter 
value boundaries: ANS and SYL 0.1 to 0.9, and BLC 0.1 
to 3.0. 

Optimization Approach 
The search space for just these three parameters is large 

and is rather complex.  Recent work with ACT-R has also 

shown that this fitting is to a noisy, multidimensional, non-

linear, multi-parameter function.  It is not an appropriate 

task to do by hand—a recent PhD thesis has shown that 

simple hill climbing does poorly (Kase 2008).   

A parallel genetic algorithm was used to fit the ACT-R 

model to the number of attempts and percent correct data 

for the nine sets of data, performing a type of regression, 

fitting a multi-variable non-linear stochastic function 

(ACT-R) to multivariate data.  This is a departure from the 

cognitive modeling community’s traditional manual opti-

mization technique.  We have also fit the subjects indi-

vidually, and obtained similar results (Kase 2008).  

Model-to-data fit was determined by an objective func-

tion, or fitness function, defined as the sum of squared 

discrepancies between model performance (number of 

attempts and percent correct) and the corresponding human 

performance (e.g., (47.3-48.1)
2
 + (81.5- 81.4)

2
). The 

fitness is in terms of error (or cost) with a fitness value of 0 

representing perfect correspondence between the model 

predictions and the human data.  
 Employing this type of automated optimization approach 
allowed for 20,000 different sets of parameter values to be 
tested in a directed manner each time the PGA was 
executed. Using the approach, the model was optimized to 
nine sets of human performance data (see Table 3). 



Results and Discussion 
Table 3 shows the resulting model performance compared 
to the human performance data using parameter value 
solution sets identified by the PGA that produced the best 
fits (fitness values less than 1.0) to the human perform-
ance, and suggest how cognition changed.  
 Several trends can be observed within the parameter 
values producing best fits. The parameter values shown in 
the table are averaged; denoted by the numeric value in 
parentheses after the parameter set values (i.e., ‘(3)’ in the 
first row means that the PGA found 3 parameter sets 
producing fitness less than 1.0, and that these values were 
averaged over 200 runs each). 
 Beginning with the seconds per syllable parameter, SYL 
is shown in the last column and last value in the triple of 
Table 3. The model predictions indicate that challenged 
subjects speak a syllable more quickly than threatened 
subjects. This is true for all treatment groups. LoCAF 
shows the greatest difference in speech rate with challenge 
SYL at 0.31 (also lowest SYL overall) and threat SYL at 
nearly two times slower (0.61). HiCAF differences in SYL 
are less: challenge 0.40 compared to threat 0.57, a differ-
ence of 0.17. PLAC shows a slightly less SYL difference 
of 0.14. Challenge subjects self-report less stress and are 
generally confident that they can perform the serial sub-
traction task well. With less stress and a low dose of 
caffeine more fluid speech appears to result, or possibly the 
speech rate acts as a window into the cognitive processes 
required to complete the subtractions (i.e., fact retrieval, 
working memory and place-keeping operations, concate-
nation of subsolutions). 
 Across treatments, the activation noise parameter values 
(ANS, first value in triple) are high compared to what 
would be manually assigned to the model in the ACT-R 
modeling community. This could be because the nature of 
the task is stressful (i.e., purposively used to elicited a 
stress response). The ANS value range in Table 3 is narrow 
from the lowest ANS of 0.67 to the highest ANS of 0.78, a 
difference of only 0.11. This hints at the fact that caffeine 
may not effect this parameter’s role in the model’s 
performance of serial subtraction. ANS values are basically 
equivalent for the PLAC and LoCAF groups for challenge 
(0.68) and threat (0.71). In this case, the slightly higher 
ANS in predicting threatened subjects corresponds to the 
lower performance (less attempts and lower accuracy), and 
the self-reports where subjects do not believe they will 
perform well. Worrying or embarrassment about their poor 
performance is a distraction and may interfere with work-
ing memory processes and verbalizing solutions. The 
greatest variability in ANS values is found in HiCAF. 
Surprisingly, the trend reverses with HiCAF challenge 
predictions yielding a higher ANS value (0.75) than threat 
predictions (0.67). 
 The base level constant parameter values (BLC, middle 
value in triple) show a trend of nearly equivalent higher 
values for LoCAF and HiCAF challenge conditions (2.65 
and 2.69) then threat conditions (2.48 and 2.35), and also 
for all BLC values under PLAC (2.49, 2.48, and 2.53). In 

this case, caffeine may be causing a ‘boost’ in the base 
level activation value of facts in declarative memory 
promoting higher probability of selection in response to a 
retrieval request and lower fact retrieval time. 
 
Table 3.  Optimization results for three treatment groups (PLAC, 

LoCAF, HiCAF) and appraisal groups (CH=challenge, 

TH=threat) comparing human performance and model 

predictions in number attempts and percent correct (both 

rounded), and fitness value associated with average (over N) of 

best fitting (less than 1.0) ACT-R parameter values (ANS, BLC, 

SYL).  

 

Human 

Perform-

ance 

Avg. 

Model 

Prediction 

Avg. 

Fitness 

Value 

ACT-R parameters 

ANS, BLC, SYL 

(N) 

PLAC (no caffeine) 

ALL 47.3,  81.5 48.1,  81.4 0.83 0.70, 2.49, 0.44  (3) 

CH 50.7,  83.3  50.4,  83.0 0.47 0.68, 2.48, 0.41  (6) 

TH 40.4,  77.9 40.3,  77.4 0.36 0.71, 2.53, 0.55  (5) 

LoCAF (200 mg caffeine) 

ALL 59.1,  86.5 59.1,  86.7 0.12 0.72, 2.64, 0.33  (4) 

CH 62.4,  88.3 62.7,  88.4 0.42 0.69, 2.65, 0.31  (3) 

TH 37.5,  74.8 37.2,  74.9 0.58 0.71, 2.48, 0.61  (6) 

HiCAF (400 mg caffeine) 

ALL 45.7,  79.2 44.7, 80.4 0.50 0.78, 2.65, 0.47  (4) 

CH 51.6,  82.8 46.1, 87.7 0.53 0.75, 2.69, 0.40  (3) 

TH 38.9,  75.1 50.4, 92.3 0.53 0.67, 2.35, 0.57  (4) 

Conclusions 

We have started to explore a more complete approach to 
studying how cognition changes under moderators like 
stress and caffeine.  We used a fairly complex study to 
gather data on a task that was stressful.  We fit a model to 
the three different caffeine treatments and appraisal groups.  
The fits were very close.  The changes to the model to fit 
these data told us—based on this model and this task and 
this population—what changes were necessary to the cog-
nitive mechanisms to lead to these differences in behavior.  
 The results suggest that there are systematic changes in 
cognition due to caffeine and appraisal.  Most notable is 
the speaking rate going up when challenged and down 
when threatened, but declarative memory retrievals are 
also affected in a more complex pattern.  
These changes represent the changes to cognition using 
this architecture as it currently exists and is commonly 
used.  A future extension to this work would be to include 
a more explicit appraisal process, such as implemented by 
Gratch and Marsella (2004) 
 These results show that using a cognitive model and 
parametric optimization approach can further our under-
standing of caffeine beyond a strictly human experimenta-
tion approach. Overall, the cognitive modeling and optimi-
zation approach was successful. The preliminary modeling 
results and interpretations offer insight on the effects of 
caffeine on task appraisal and subsequent performance of 



the task, and promise an improved methodology for the 
study of other behavioral moderators and other cognitive 
tasks. At this point in our investigation more analysis is 
needed and additional parameter sets should be examined, 
along with continued refinement of the serial subtraction 
model for predicting the effects of caffeine on cognition. 
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