
Connecting a Cognitive Model to Dynamic Gaming Environments:
Architectural and Image Processing Issues

Kunal Shah (kdshah@eos.ncsu.edu)
Sameer Rajyaguru (srrajyag@eos.ncsu.edu)
Robert St. Amant (stamant@csc.ncsu.edu)

Department of Computer Science, North Carolina State University
Raleigh, NC 27695 USA

Frank E. Ritter (ritter@ist.psu.edu)
School of Information Sciences and Technology, The Pennsylvania State University

University Park, PA 16081 USA

Abstract

This paper describes an image processing system that has
been coupled with the ACT-R cognitive modeling
architecture. The system supports interaction with
dynamically changing visual environments associated
with off-the-shelf computer games running independently
of the model. The image processing techniques have been
applied to three different games and are intended to be
extensible to others. This paper discusses the image
processing approach and its strengths and limitations.
The implications for cognitive modeling are twofold: the
image processing system can be used across different
models, extending their range, and it provides a closer
integration with more naturalistic environments.

Introduction
A basic concern in cognitive modeling is the
representativeness of problem-solving environments.
Ideally, we want environments that the model lives in to
represent all of the relevant details that humans are
aware of and constrained by in carrying out a task. The
most direct way of satisfying this goal is to build
models that can interact with the real world; however,
we find a wide gap between the input capabilities of
existing cognitive modeling architectures and the
information that natural environments commonly make
available.

Recent research efforts have adopted the more
modest goal of building cognitive models that can
interact with software environments designed for human
users. Everyday computer productivity applications
contain text, numbers, and discrete objects and symbols
in relatively simple arrangements; these environmental
properties make it feasible, sometimes even
straightforward, to accommodate the input requirements
of a symbolic cognitive model.

Significant progress has been made through the
integration of cognitive models with software
environments, as demonstrated by the growing literature
of ACT-R research (Anderson and Lebiere, 2000). Still,

these environments are relatively simple in comparison
with natural environments. They tend to be static,
discrete, and predictable, properties that can be
exploited by a model but that simultaneously limit the
range of results that can be reached in experimenting
with them.

We are attempting to overcome this limitation, by
building models that can interact with computer-based
video games. Games have played an important role in
helping cognitive modelers gain insight into the process
of human reasoning. Historically, strategy games such
as tic-tac-toe and chess have led to an improved
understanding of human cognition (Newell and Simon,
1972). More recently, dynamic games have attracted
attention as testbeds in which dynamic real-time human
decision-making can be observed and reproduced.

Visual processing and analysis are key to effective
human behavior in these environments, but this aspect
has been neglected in cognitive modeling research on
computer games. Cognitive models are most often built
to communicate with the application programming
interface (API) to software environments, bypassing the
complexities of image processing. We believe that
eventually, if we are to reach the goal of building
models that automatically interact with a wide range of
real environments, the issue of visual processing must
be addressed. Our work takes early steps toward the
goal of integrating cognitive models with environments.

In this paper we describe the properties of visual
environments, with a focus on computer games, that are
relevant for the design of an image processing
component in a cognitive model. We describe our
image processing architecture, which has been adapted
to three different game interfaces. Our efforts have
mostly concentrated on one of these games, a driving
simulation. We explain how the image processing
system has been extended from a set of general-purpose
techniques to include functions specific to the driving
game, to support a realistic model of human driving.

In Proceedings of the Fifth International Conference on Cognitive Modeling,
189-194. Bamberg, Germany: Universitats-Verlag Bamberg.

Unknown
1

We believe that our work has implications for
cognitive modeling in games (Laird, 1999), models for
robot agents, and models for user interface evaluation
(Ritter and Young, 2001).

Visual environments for cognitive modeling
The design of an image processing component for a
cognitive model is not solely dependent on the model;
the environment and the tasks to be carried out are also
important factors. Designers must consider the
efficiency, robustness and accuracy of candidate image
processing algorithms and tradeoffs with the
requirements of the cognitive model. We can
summarize environment properties (and to some extent
task properties) as follows.
Static versus dynamic environments. In some
environments, changes take place only in response to
the actions of the model. In a gaming environment,
monitoring and real-time responses in the image
processing component are necessary for the model to
maintain an accurate representation of its properties.
Discrete versus continuous environments. A
environment is effectively continuous if it is
characterized by patterns that vary over a range of
values much greater than can be individually accounted
for symbolically (e.g., arbitrary numerical values, hues,
or auditory signals.) Digitized environments, such as
the pixels of the screen image of a game, are effectively
continuous if the individual pixel values and
relationships are not meaningful to the cognitive model.
The goal of image processing is to translate continuous
attributes into discrete values that can be handled by the
model.
Predictable versus unpredictable environments. In
some environments, it is possible to predict the next
state from the current state. Static environments have
high degree of predictability, though this may change
when actions are initiated. The games we have
considered in our research are also to some extent
predictable. For example, if objects always move in
straight or at least continuous trajectories, then once an
object’s visual representation has been processed it can
be tracked instead of iteratively reprocessed.
"Simple" versus "complex" environments. The
complexity of the objects constituting the environment
is a dominant factor in the design of an image
processing system. There are several dimensions to
complexity:
• Shape is generally the most relevant cue for object

recognition. If the shapes to be recognized are
known in advance, matching can be used. After
preprocessing, the image is partitioned into distinct
regions, which are assembled combinatorially to
form super regions. These can then be matched
against prototypes of possible objects. Arbitrary
shape recognition is much more complex, and in

our work can only be dealt with by specialized
functions.

• Color and texture are other important cues for
object recognition. Normalization and quantization,
combined with edge detection for contour analysis,
and texture analysis can be used to segment objects
based on color and texture.

• Motion can also play a role in detecting objects.
The best example of this is in camouflaging, when
it is not possible to distinguish the bounds of an
object based on color or shape. Many image
analysis techniques use motion information as the
basis for segmenting objects from background. In
some games attending to motion can be the most
efficient way of focusing attention on properties of
the environment that are relevant at the current
time.

• Spatial relationships can constrain the amount of
visual information that needs to be processed. This
naturally affects processing time.

• Spatial positioning is also relevant. In some
environments, only a subset of the visible scene
may need to be processed, rather than the entire
visible region. Further simplification is possible if
the subset occurs at a fixed position.

Sparse versus crowded environments. A final factor
is the number of objects to be processed. The
complexity of objects of interest, as discussed above, is
generally the most important factor. However, if only a
few objects need to be considered, whether simple or
complex, then the burden on the image processing
algorithm is reduced dramatically and the requirements
of fast computation and efficiency are relaxed.

In our past work on visual processing for cognitive
models, we have concentrated on environments that are
static, predictable, simple, and relatively sparse. The
focus of our past work has been to translate effectively
continuous patterns, represented on the screen at the
pixel level, into symbolic representations of characters,
widgets, and other standard visual objects in the
Windows environment. The games we discuss in the
next section are dynamic, less predictable, and more
complex in a variety of ways. They are still relatively
sparse and do not differ qualitatively from standard
productivity applications with respect to discreteness
and continuity.

Game environments
 We have worked with three different games, whose

interfaces are shown in Figures 1, 2, and 3. All of these
games were developed by others and have not been
modified by us. Figure 1 shows a first-person driving
game, in which the model controls the speed and
steering of the car. Figure 2 shows a Mars rover
simulation. The goal is to direct the rover over the
planet surface, collecting specimens of the local fauna.

Unknown
2

When the rover collides with rocks, these disappear and
release a small swarm of creatures to be chased and
captured. Figure 3 shows a Mars base exploration
game. This game is considerably more complex than
the others, requiring users to reason about resources,
objects with different capabilities, autonomous agents,
and spatial relationships. Although we have
developed image processing functions that can parse
all three of these environments, the only environment
for which we have constructed complete cognitive
models is the driving game.1 This game will thus be
the focus of our discussion below.

 The models for the driving game are based on the
ACT-R architecture. The 5.0 release of ACT-R
interacts with user interfaces using a Perceptual-
Motor component (ACT-R/PM). ACT-R/PM (Byrne,
2001) includes tools for creating and modifying user
interfaces so that models can see and interact with
interface objects via hooks provided in the
development programming environment. This allows
most models to interact in some way with most
interfaces that are written in the underlying ACT-R
development language, Common Lisp, and to let all
models interact with all interfaces written with the
special tools.

We have developed a more general version of
ACT-R/PM, which provides ACT-R direct access to
an interface, removing the need for a specific interface
creation tool. The extension, which we call SegMan,
takes pixel-level input from the screen (i.e., the screen
bitmap), runs the bitmap through image processing
algorithms, and builds a structured representation of
the screen (St. Amant & Riedl, 2001). SegMan can
also generate mouse and keyboard inputs to
manipulate objects on the screen. This functionality is
called through the ACT-R/PM theory of motor output,
but we have extended the output results to work with
any Windows interface. This is done by creating very
primitive events (click icon, select button, etc.), which
are implemented as functions at the operating system
level. As such, they are indistinguishable from user-
generated events. Currently, we have a fully
functional system that runs under Windows 98 and
2000.

In the next section we describe the architecture of
the image processing component, its design rationale,
and its application to the driving game.

Image processing in SegMan
Computer vision and image processing are two
distinct but closely related fields falling under the

1 Information on visual processing in the model, how it

influences cognition, and how the code module can be reused,
plus details on the model s knowledge and behavioral
predictors, can be found in the following unpublished paper:
www4.ncsu.edu/~stamant/papers/HRI-v406-25.pdf.

umbrella of computer imaging. This distinction is based
upon who is the ultimate receiver of the visual
information. Image processing algorithms generate
results that are used by people in a variety of different

Figure 1: Driving environment, available at
www.theebest.com/games/3ddriver/3ddriver.shtml.

Figure 2: Mars rover environment.

Figure 3: Mars base environment, available at
perso.wanadoo.fr/salotti/marsbase.htm.

Unknown
3

domains; computer vision applications generally
produce results that are targeted for further automated
processing, for example by an AI agent or, in our case, a
cognitive model (Umbaugh, 1998). Image analysis,
combined with feature extraction and pattern
classification, is the key to a computer vision system,
the end product being the extraction of high level
information (e.g. objects) from an image. Most
techniques used for image processing can also be found
in computer vision systems.

As developers we face a practical tradeoff between
building models that respect the known properties of
biological vision (taking the computer vision approach)
and building models that can run fast enough on
conventional computer hardware to interact with off-
the-shelf applications in real-time (taking the image
processing approach.) We have leaned toward the
latter, with the hope that future research will explore the
former direction (e.g., see (Chapman, 1992)), as our
computational resources increase and our software
improves.

The fundamental concept underlying any visual-
processing algorithm is a process called segmentation.
Segmentation is the process of delineating regions that
constitute an object and separating them from the
background in an image. In our domain, is directly
influenced by the category to which the game belongs.
The object recognition process (as a part of image
analysis) can be viewed as a sequence of preprocessing
of the image, data reduction and morphological
filtering, and feature extraction and analysis. In our
discussion of these steps, we mention the existence of
alternative techniques for accomplishing different goals;
a detailed discussion of such techniques, even to the
extent of giving examples, is beyond the scope of this
paper. (See instead Umbaugh (1998).)
Preprocessing. During this stage, the image may be
quantized (reducing the number of color levels or
spatially) or it may be enhanced to prepare it for the
subsequent processing steps. Some other image
geometry operations such as cropping, zooming,
shrinking, enlarging, translating, and rotating may be
performed on the entire image or parts of image (these
parts are called regions of interest). Another important
and widely used preprocessing operation is edge
detection, for which various different techniques can be
applied. Once the edges have been detected, it is often
necessary to find lines. A line may be defined as a
collection of edge points that are adjacent and have the
same direction. Hough transforms are designed
specifically for this purpose. All these operations
prepare the image so as to make the data reduction and
feature extractions tasks easier.
Data reduction and morphological filtering. Data
reduction algorithms take the preprocessed image and
reduce the image data such that it can be analyzed by

feature analysis algorithms. This is a crucial step in
solving the object recognition problem, and image
segmentation is the key to it. Morphological filtering
refers to changing the structure or form of the image.
As stated above, the goal of image segmentation is to
divide the image into regions, which may represent an
object in its entirety or may be part of a larger object.
Various methods exist to segment an image into regions
with varying levels of complexity and the accuracy with
which the image is segmented. The basic idea
underlying these methods is that the objects can be
distinguished by either considering them to be a lump of
pixels with some measure of homogeneity in terms of
features such as color, brightness, and texture, or
perceiving them as contrasting with other objects on
their borders. Another important issue is related to
connectivity between segments, i.e., deciding which
segments should be combined to represent an object.

Most image segmentation algorithms make use of
region growing and shrinking, clustering, and boundary
detection, alone or in combination. Each of these areas
encompasses a variety of methods.
Feature Extraction and Analysis. Feature extraction
can be viewed as an extension of the data reduction
process. Once the features have been extracted, the next
step is to classify them to identify objects. This requires
application level knowledge and hence application
specific knowledge is used in this final phase.

One way to classify objects is to define a feature
space and then compare the object’s feature vector
against the template object’s feature vector. A feature
vector is an n-dimensional vector such that each
dimension represents exactly one feature of the object.
Thus, in a simple example, we might represent an object
in terms of its average RGB values and its area, giving a
4-dimensional feature space. Different methods are
used to compare the similarity (or the difference)
between two feature vectors. One of the simplest
metrics for measuring the distance between two vectors
is Euclidean distance, but other weighted metrics are
common as well.

Care must be taken while selecting the features, so
as to ensure that the features chosen are robust. For
example, if a feature is RST invariant, it will remain the
same despite the object being subjected to rotation,
scaling or translation. In order to extract features, the
image that results from data reduction and
morphological transformation is analyzed and labels are
then assigned to the objects. The labeled object now
can be thought of as a binary image having a value of 1
and the rest of the image is having a value of zero. This
image is then used for the extraction of features of
interest such as area, center of area, axis of least second
moment, perimeter, Euler number, projections, thinness
ration and aspect ratio. While the first four are used
more commonly and help identifying the location of the
object, the latter four are used under specific, domain-

Unknown
4

dependent conditions and tell something about the
shape of the object.

Based on this stepwise decomposition, we have
developed a set of functions to act as a core,
application-independent image processing component
for cognitive modeling, as described in the next section.

The System
Architecture. Figure 4 shows the architecture of the
entire system. As shown in the figure, the image
processing substrate interacts with the game
environment by capturing snapshots of it at regular
intervals. For this, it makes use of APIs provided by the
SegMan system. Thus, SegMan provides sensor and the
effector services to the system. The image processing
substrate consists of two layers: a generic core and an
application specific layer.

Generic core. The generic core performs functions that
fall into the preprocessing stage of the object
recognition process. It works on a captured image that is
a snapshot of the gaming environment. The following
operations are performed on the captured image, as
illustrated in Figure 5.
• Normalize and Quantize Image. Usually the

captured image contains a level of detail (in terms
of number of values in the R, G and B streams in
the image) that may not be needed to serve the
model’s purpose of controlling the game
effectively. This function normalizes the number

of color levels per stream used in the image to a
value appropriate to serve the model’s needs.

• Edge Detect Image. This function highlights
changes in color intensity values in the image. A
Laplacian 3x3 edge detection kernel is used for
convolution.

• Locate Moving Objects. This function detects
moving objects in successive game screen
snapshots. It assumes that the background remains
static and that the only change in the environment
is due to moving objects. Two consecutive
snapshots of the environment are XORed to yield
an image that contains only the moving objects.

Application specific layer. This layer performs
functions that fall into the feature extraction and
analysis stage of the object recognition process. It
consists of functions that provide a general level of
information about the image. Because tasks inevitably
have domain-specific properties, we must tailor the
image processing component by adding functions for
specific games. For the driving game, the extensions
are based on studies of human driving. Studies of
driving behavior by Land and Lee (1994) and Land and
Horwood (1995) describe a "double model" of steering,

Cognitive Models, Controllers and Planners

Gaming Environments

Image Processing Substrate

Generic Core

Application specific layer

SegMan

Sensor Effector

Figure 4. System architecture.

Capture Game Screen

Normalize and
Quantize Image

Quantized
Image

Edge
Detected

Image

Edge detection

Image

Locate Moving
Objects*

(* Works on images from consecutive snapshots)

Figure 5: Generic core of image processing substrate.

Unknown
5

in which a region of the visual field relatively far away
from the driver (about 4 degrees below the horizon)
provides information about road curvature, while a
closer region (7 degrees below the horizon) provides
position-in-lane information. Attention to the visual
field at an intermediate distance, 5.5 degrees below the
horizon, provides a balance of this information,
resulting in the best performance.

To generate the relevant information, several
additional functions are needed, built on the generic
core.
• Get Strips. This function gives the location of the

center of the road to assist the model in maintaining
its location in the desired lane.

• Get Horizon. This function gives the point beyond
which the road cannot be seen, obtained by a linear
bottom-to-top traversal of scan lines.

• Get Left (Right) Road Edge Start. The road image
begins at the bottom of the screen, in a perspective
view, bounded on both sides by the edges of the
game window. This function returns the points on
either side at which the edge of the road is visible
and not clipped by the window.

• Get Left (Right) Road Edge End. This function
returns the analogous points at which the road
disappears at the horizon or disappears in a curve
around a mountain.

• Get Left (Right) Slope. This function provides a
mechanism for the model to estimate the degree of
curvature that the road is taking.

• Draw Strip. This function constructs a continuous
strip by interpolating the slopes of the missing parts
of the strips from the slopes of the existing ones.

Implementation
The system was implemented in C++ using already
existing APIs for interfacing with the windowing
environment. To illustrate the performance of the
system, a set of 20 runs was performed on a Dell P4
(1,700 MHz, 512 MB RAM) running Windows 2000.
Mean processing times over a representative set of
images in the driving task are as follows. These
numbers constrain the minimum cycle time. A good
deal of the computation for these values is shared
between the functions and can be cached across
function calls, however, making the average cycle time
somewhere between one and two seconds.

Function Mean Std. Dev.
Get Field Bounds 1155 ms 31 ms
Get Road Edge (left, right) 1155 ms 31 ms
Get Slope (left, right) 1170 ms 34 ms
Get Horizon 1211 ms 35 ms

Obviously these times do not accurately reflect
human visual processing speeds; nevertheless they are

fast enough to allow interactive control of the driving
game, to support modeling at a level of abstraction
higher than the perceptual.

Discussion
Our goal in building these systems is to provide

cognitive modelers with a wider range of environments
against which their theories can be tested. This work is
preliminary in the sense that our system has played a
part in the evaluation of only one such environment,
which means that its generality remains an open issue.
Nevertheless it acts as a useful proof of concept. Our
current work is toward building an application-specific
layer for much more demanding environments, such as
shown in Figure 3, that will exercise all of the
capabilities of a cognitive model, from motor actions
and perception to reasoning and learning.

Acknowledgments
This project is sponsored by the National Science
Foundation, award IIS-0083281, by the Office of Navy
Research, contract N0001495RF55555, and by the
Space and Naval Warfare Systems Center, San Diego.
The views in this paper do not necessarily reflect the
position or the policies of the U.S. Government, and no
official endorsement should be inferred.

References

Byrne, M. D. (2001).ACT-R/PM and menu selection:
Applying a cognitive architecture to HCI.
International Journal of Human-Computer Studies,
55(1):41-84.

Chapman, D. (1992). Intermediate Vision: Architecture,
Implementation, and Use. Cognitive Science, 16(4):
491-537.

Laird, J. (1999). It knows what you’re going to do:
Adding anticipation to a Quakebot. Working Notes of
the AAAI Spring Symposium on AI and Interactive
Entertainment, pp. 41-50.

Land, M. F., and Horwood, J. (1995). Which parts of
the road guide steering? Nature, 377:339-340.

Land, M. F., and Lee, D. N. (1994). Where we look
when we steer. Nature, 369:742-744.

Newell, A., and Simon, H. (1972). Human problem
solving. Prentice Hall.

Ritter, F. E., and Young, R. M. (2001). Embodied
models as simulated users: Introduction to this special
issue on using cognitive models to improve interface
design. International Journal of Human-Computer
Studies, 55(1):1-14.

St. Amant, R., and Riedl, M. O. (2001). A perception/
action substrate for cognitive modeling in HCI.
International Journal of Human-Computer Studies,
55(1):15-39.

Umbaugh, S. (1998). Computer Vision and Image
Processing. Prentice Hall.

Unknown
6

