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Abstract

We propose a large-scale system, with minimal global topolog-
ical structure, no local internal structure, and a simple online
biologically plausible local learning rule that captures super-
vised learning in the barn owl. We outline how our computa-
tional model corresponds to both the underlying neuroscience
and the experimental paradigm used in the relevant prism stud-
ies of the barn owl. We show that our model is able to capture
the basic outcomes of this experimental research despite learn-
ing the initial tuning curves, which is not done in other compu-
tational models, and a much more restricted time frame relative
to the original experimental condition. We outline some vari-
ations between our model and the neuroscience outcomes and
suggest future extensions in terms of larger models and time
frames, more detailed analyses of the learning parameters, and
richer model designs.
Keywords: supervised learning, spiking neural network, audi-
tory localization, barn owl

Introduction
Supervised learning in the brain is generally viewed as a
learning episode where one neuron ensemble acts as an in-
structive signal that modulates connectivity and activity in
another neuron ensemble (Knudsen, 1994). The auditory lo-
calization pathway in the brain has been used as a model sys-
tem for studying how the brain performs supervised learning
both because experience can alter auditory localization and
because the pathways are relatively well studied (Knudsen,
2002). The species that has been studied most extensively in
this context is the barn owl (Tyto alba; Knudsen, Blasdel, &
Konishi, 1979).

There are a number of computational models that have
been used to compliment the neuroscience research on su-
pervised learning in the barn owl auditory localization path-
way (D’Souza, Liu, & Hahnloser, 2010; Fischer, Anderson,
& Peña, 2009; Huo & Murray, 2009; Huo, Murray, & Wei,
2012; Witten, Knudsen, & Sompolinsky, 2008). All of these
models are small in scale (under 100 neurons), use highly
structured systems that are determined by the modelers, and
a rather complex learning rule (usually spiking-time depen-
dent plasticity). We propose a larger-scale (and scalable) sys-
tem, with minimal global topological structure, no local in-
ternal structure, and a simple online biologically plausible lo-
cal learning rule that captures supervised learning in the barn
owl.

Neuroscience Background
The optic tectum of the barn owl (analogous to the superior
colliculus in humans) hosts the neurophysiological associa-
tions between the auditory localization cues and locations in
visual space (Knudsen, 2002). Locations in the optic tectum
respond maximally to auditory or visual stimuli located at a
specific region of space or the receptive field. The associ-
ated neurons are tuned to auditory localization cues that cor-
respond to visual field locations (Brainard, Knudsen, & Es-
terly, 1992).

Audio-visual pairings in the optic tectum are learned
through early experience. Studies have shown that expos-
ing juvenile barn owls to prismatic spectacles that displace
the visual field horizontally (most commonly 23�) results in a
learned displacement in the tuning curves of the correspond-
ing auditory neurons over a number of months (Knudsen,
1985). Learned changes primarily occur in the efferent con-
nections of the external nucleus of the inferior colliculus
(ICx): an earlier auditory processing step in the auditory lo-
calization pathway that directly connects to the optic tectum
(Brainard & Knudsen, 1993). These changes occur on the ba-
sis of an error signal projected back from the corrective visual
input in the deeper layers of the optic tectum (Peña & De-
Bello, 2010). It is this re-tuning phenomenon of the auditory
ICx neurons on the basis of visual input in the deeper layers
of the optic tectum that the proposed model will capture.

Computational Background
We use the Neural Engineering Framework (NEF; Eliasmith
& Anderson, 2004). The NEF is used to represent, transform,
and add dynamics to vectors of numbers via populations of
spiking neurons, their synapses, and recurrence connections
in the network.

NEF representations are an n-dimensional extension of the
population coding work of Georgopoulos, Schwartz, and Ket-
tner (1986). Neurons in the population are described in terms
of an encoder and decoder that translate neural activity (a fil-
tered spike train) to and from the vector space. The activity
of a neuron can be expressed as:

a = G[ae ·x+ Jbias], (1)

where G is the activation function, a is a scaling factor, e
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is the encoder, x is the vector to be encoded, and Jbias is the
background current. The decoded estimate x̂ is described by
the following equation:

x̂(t) = Â
i

diai(t), (2)

where di is the decoder and ai is the activity of neuron i.
Neural activity overall is computed as a spike train:

ai(t) = Â
s

H(e�(t�ts)/tPSC), (3)

where H is the Heaviside step function, s is the set of
all spikes occurring before the current time, and tPSC is the
post-synaptic time constant for the connection (a neural prop-
erty). The decoders are computed through a least-squares
minimization of the difference between the decoded estimate
and the encoded vector:

d = °�1G

Gi j =
Z

aia jdx

° =
Z

a jxdx

(4)

We use the Prescribed Error Sensitivity (PES) supervised
learning rule described in MacNeil and Eliasmith (2011) that
performs the described least-squares minimization online.

Dwi j = ka je j ·Eai, (5)

where wi j is the connection weights between the ith and jth
neurons, k is a scalar learning rate, and E is the error vec-
tor that will be minimized. The other symbols are consistent
with the previous formulas. This rule is analogous to classic
perceptron delta rule with the exception that only a portion of
the error signal that each neuron is sensitive to is computed
for a given neuron.

The Model
We use a highly simplified model of the auditory input, visual
input, ICx, and optic tectum in order to capture supervised
learning in the auditory localization pathway of the barn owl.
Both the auditory and visual input are described in terms of a
180� arc on the unit circle in the horizontal plane from -1.0 to
1.0.1 This arc was represented by two values in the network
corresponding to the x and y values. Though the input could
vary fully over this continuous space, assessment occurred in
4� increments as we describe later.

Three ensembles of neurons describe the basic model: the
ICx, the shallow optic tectum, and the deep optic tectum.
Each ensemble was comprised of 400 leaky-integrate-and-fire
(LIF) neurons. This neuron model is widely used for its flexi-
bility as an approximation of a broad range of neuron models
(Koch, 2004). It also functions as a limiting case of more
complex models like the Hodgkin-Huxley model (Partridge,

1This gets rotated to the left by 23� in the second training block.

1966). To set the a and Jbias parameters (Equation 1) we
randomly chose these values such that the resulting ideal tun-
ing curves generated by the LIF neuron model would involve
neurons that fired over a range of inputs between ±15� and
±35�.

Figure 1: Ideal desired neuron tuning curves (used to generate
neuron gain a and bias Jbias parameters).

The auditory input enters via the ICx, projects to the shal-
low optic tectum then to the deep optic tectum. The latter
receives the visual input and projects the difference between
the shallow optic tectum and the visual input as an error sig-
nal back to the ICx connections (see Fig. 2).

Figure 2: Basic structure of the model, where OTs is the shal-
low optic tectum, OTd is the deep optic tectum, and the dotted
line is an error signal.

Unlike all other computational models of supervised learn-
ing in the barn owl, our model did not provide any internal
structure. This means that the signal from the ICx to the shal-
low optic tectum originally had random weights (i.e., com-
puted the function f (x) = 0). The system, therefore, had to
learn the initial spatial representation prior to learning the
modified representation (i.e., the introduction of the prism).
It also lends a certain symmetry to the model: initial connec-
tions from the ICx to the optic tectum in the early life of the
owl (i.e., before experimentation) have an identical learning
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procedure to subsequent learning. However, this does over-
simplify some of the details in the underlying neuroscience
(e.g., differences between neurotransmitters used in different
learning situations).

In what follows, we describe the training and assessment
procedure we used on the model.

Method
The methodological design of the study is based off of the
work of Brainard and Knudsen (1998) and Linkenhoker and
Knudsen (2002). We outline it, below.

The basic setup is comprised of 4 blocks: two training and
two assessment. They occurred in alternating order with one
of the training blocks first. Both training blocks lasted 200s
(3.33min) of simulation time during which randomly selected
stimuli along the 180� arc of the unit circle were presented for
500ms intervals. This resulted in 400 random stimuli being
presented during each training block.

The assessment blocks determined the average activity of
each neuron in 4� increments along the 180� arc of the unit
circle. Each stimuli is presented for 50ms resulting in a total
of 2.25s of simulation time across 45 stimuli. No learning oc-
curred during each assessment block. The tuning curves were
quantified in terms of the best tuning, which is calculated as
the center of the range of values that elicited greater than 50%
of the maximum response. The second assessment block used
the same best tuning location as its zero point in order to see
the difference across assessments.

As many more neurons were examined in the model than
in the neuroscience study, we assumed that neurons with
the same best tuning location were proximate to one an-
other (consistent with their tonotopic arrangement in the ICx;
Knudsen, 2002). Thus, each neuron was normalized relative
to the maximum activity elicited by the pool of neurons with
the same best tuning location. For example, if 4 neurons had
the their best tuning (as described above) 16� left of the zero
point, they would all be normalized relative to the maximum
activity among them.

The second training block occurred with the prism signal
present and a deviation in the visual input of 23� to the left.
During the second assessment block the prism was removed,
but no learning occurred to stabilize the original output. This
was consistent with the original study.

Results
The results of the model were as expected. The model was
able to accommodate the prism with appropriate adaptations
in the ICx connections. We used the average interaural time
difference (ITD; the standard measurement unit in the litera-
ture) to arc angle conversion of 2.5us to 1� of the unit circle
(Linkenhoker & Knudsen, 2002).

Neurons in the first assessment developed tuning curves
approaching a normal curve when normalized and centered
to their best tuning (see Fig. 3). The mean tuning curve was
an even better approximation of normality (see Fig. 4). The
maximum of the mean tuning curve had a score of 0.73.

Figure 3: The learned tuning curves of 10 random neurons
during the first assessment.

Figure 4: The mean learned tuning curve of 112 random neu-
rons during the first assessment.

Neurons in the second assessment adapted to the prism
condition by narrowing their range of activity slightly from
the first training condition (see Fig. 6). The maximum activ-
ity score was 0.73. Figure 5 shows the neuron tuning curves
relative to their own best tuning rather than the best tuning of
the initial assessment (Fig. 7). The mean tuning curve of this
population achieved a peak angle rotation of 50us and 20� as
a consequence of the prism (see Fig. 6).

Discussion
Recall that the goal was to model supervised learning in the
localization pathway of barn owls using a simplified spiking
neural network and learning rule. Given that the owls in the
original empirical study had their initial training (birth un-
til assessment) and re-training (prism adaptation) occur on
the order of months instead of minutes, the results are very
promising. The average tuning curve was more regular in
shape than that expected by the original experiment (see Fig.
4 and 9, respectively). Nevertheless, the model’s results are
consistent with the corresponding empirical research on the
whole.
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Figure 5: The learned tuning curves of 10 random neurons
during the second assessment relative to their own best tuning
curves (i.e., within the context of the prism).

Figure 6: The learned tuning curves of 105 random neurons
during the second assessment relative to their own best tuning
curves (i.e., within the context of the prism).

In the original study, juvenile owls achieved a median ro-
tation of 43us (17�) with an ideal rotation of 57us for a 23�
prism deviation (Brainard & Knudsen, 1998; Linkenhoker &
Knudsen, 2002). Our score of 50us is placed in between these
two values. We expect that this is a consequence of hav-
ing our learning rate too high. Lower learning rates require
longer time lines, which often require specialized hardware
as the model’s requirements increase both with the size of the
neuron populations and the length of time that is simulated.

The current model is a preliminary prototype to determine
whether it would be worthwhile to commit the computational
effort to run this model at a much larger scale. Our results
suggest that it is worth scaling up the model in future work.
This would then allow us to more deeply explore effects of
the learning rate as well as the learning trajectory during the
prism condition.

The generalizability of this technique is much stronger than
all of the other computational models. Many of the models,
including Witten et al. (2008), require that the individual neu-

Figure 7: The learned tuning curves of 10 random neu-
rons during the second assessment relative to the best tuning
curves from the first assessment.

Figure 8: The learned tuning curves of the same 112 neurons
from the first assessment during the second assessment rela-
tive to the best tuning curves from the first assessment.

rons are already sensitized to a given location and often only
that location. This model learns to represent a distribution of
values with a simple learning rule (PES). The system, based
on its training input, manages to capture tuning curves that,
on average, are very similar to what one would expect a real
neuron to have. It is then able to accommodate the prism de-
viations from within this learned framework.

The current model uses a post-synaptic time constant in
the scale of a-amino-3-hydroxy-5-methyl-4-isoxazole propi-
onic acid (AMPA; 5ms), which is known to be a contributing
factor for the learned signals (e.g., prior to the prism con-
dition; Knudsen, 2002). Research suggests that there are at
least two other neurotransmitters that contribute to supervised
learning in the barn owl: N-methyl-D-aspartate (NMDA) and
g-aminobutyric acid type A (GABAA). AMPA contributes
to learning the new signals (during the prism condition) and
GABAA regulates between the two. GABAergic inhibition
also seems to have a gating-like effect on the learning pro-
cess overall. It determines when the error signal is propagated
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Figure 9: Original graph of the interaural time differences
across the prism and no prism conditions, included with per-
mission from Brainard and Knudsen (1998).

from the deeper layers of the optic tectum to the ICx (Peña &
DeBello, 2010). We would like to begin incorporating these
more detailed aspects into future instantiations of the model.

A number of additional extensions from the neuroscience
literature are readily amenable to the model. The learning
trajectories associated with larger time frames, in particular,
show a number of interesting details. First, juvenile barn
owls do not learn to adapt to the prism spectacles until af-
ter they are 60 days old, even if they are attached to them at
as early as 13 days (Brainard & Knudsen, 1998). Our cur-
rent research suggests that this property might be a conse-
quence of changes in the initial tuning curves exemplified in
Fig. 1. Second, after about 200 days learning tapers off such
that effectively no learning occurs after about a year in the
standard paradigm (Brainard & Knudsen, 1998; Linkenhoker
& Knudsen, 2002). However, as a third detail, learning is
actually possible in yearling owls and older if a special incre-
mental learning paradigm is used (Linkenhoker & Knudsen,
2002). Adaptations in the learning parameters are particu-
larly amenable to this situation, with a general trend towards
higher tolerance learning rates over time. Using dedicated
neural simulation hardware, we intend to explore these crit-
ical periods and paradigms at full-scale (i.e., day for day of
simulation to real time).

Conclusion
Recall that the goal was to model a large-scale system, with
minimal global topological structure, no local internal struc-
ture, and a simple biologically plausible online local learning
rule that captures supervised learning in the barn owl. As a
model organism for supervised learning, the barn owl lends
itself to computational models of learning. We outlined in
broad strokes how the deeper layers of the optic tectum moti-
vates this learning in the neural projections from the external
nucleus of the inferior colliculus (ICx) via discrepancies be-
tween auditory input and visual input. We outlined the NEF

framework, and described how it can be used to map neural
activity to vector representations. We also described a simple
learning rule for our system (PES).

In subsequent sections, we outlined how our computational
model corresponds to both the underlying neuroscience and
the experimental paradigm used in the relevant prism studies
on the barn owl. We showed that our model is able to cap-
ture the basic outcomes of this experimental research despite
learning the initial tuning curves (the first training block) and
a much more restricted time frame. We outlined some vari-
ations between our model and the neuroscience outcomes,
mainly in terms of an overly strong learning rate. We then
suggested some future extensions of the research in terms of
larger models and time frames, more detailed analyses of the
learning parameters, and more detailed model designs. Just as
the barn owl is a (simple) model organism for the complexity
of supervised learning in general, our model also functions
as a simple but powerful computational instantiation of the
complexity of the model organism.
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